peter H.沙尔。We are also thankful for comments from participants at several seminars (University of Salzburg, University of Würzburg, University of Oxford, University of Mannheim) and conferences (Villars Workshop on International Economics, PRONTO Workshop in Paris, DEGIT in Nottingham, EEA in Geneva, ETSG in Paris, Stoos Sinergia Workshop, TRISTAN workshop in Bayreuth).1参见Breinlich等人的最新作品。(2016),Felbermayr,Aichele和Heiland(2016)的跨大西洋贸易和投资伙伴关系(TTIP),或Fajgelbaum,Goldberg,Kennedy和Khandelwal(2019)的美国和中国之间的2018年美国贸易战。
1美国德克萨斯州安德森癌症中心的转化分子病理学系,美国德克萨斯州77030,美国; enbarrientos@mdanderson.org(e.b.t.); rnlazcano@mdanderson.org(r.l.)2美国德克萨斯州安德森癌症中心,美国德克萨斯州休斯敦市的安德森癌症中心研究癌症系; kwevans@mdanderson.org(K.E。); yqrizvi@mdanderson.org(y.r。); aakcakanat@mdanderson.org(a.a.); fmeric@mdanderson.org(f.m.-b。)3 Boehringer Ingelheim RCV,奥地利维也纳1121; francesca.trapani@boehringer-igheim.com(f.t。)4 Boehringer Ingelheim,德国Biberach 88400; eva_johanna.madlener@boehringer-Ingelheim.com 5 Nbe-therapeutics AG,瑞士巴塞尔4057; lorenz.waldmeier@boehringer-Ingelheim.com 6病理学系,德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; alazar@mdanderson.org *通信:graso@mdanderson.org†这些作者对这项工作也同样做出了贡献。4 Boehringer Ingelheim,德国Biberach 88400; eva_johanna.madlener@boehringer-Ingelheim.com 5 Nbe-therapeutics AG,瑞士巴塞尔4057; lorenz.waldmeier@boehringer-Ingelheim.com 6病理学系,德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; alazar@mdanderson.org *通信:graso@mdanderson.org†这些作者对这项工作也同样做出了贡献。
摘要估计异构治疗效应对许多学科引起了极大的兴趣,最值得一提的是医学和经济学。到目前为止,当代研究主要集中在连续和二元响应上,在传统上,即使在某些模型误差下,也可以通过线性模型估算异质的治疗效果,从而允许估计恒定或异构效应。更复杂的生存,计数或顺序结果的模型需要更严格的假设,以可靠地估计治疗效果。最重要的是,非挑剔的问题需要对治疗和预后效应进行联合估计。基于模型的森林允许同时估计协变量依赖性治疗和预后效应,但仅用于随机试验。在本文中,我们建议对基于模型的森林进行修改,以解决观察数据中的混杂问题。在特殊性中,我们评估了最初由Robinson(1988,Conemenice)提出的正交策略,该策略是针对广义线性模型和转化模型中异质治疗效果估计的基于模型的森林的背景。我们发现,该策略在具有各种结果分布的模拟研究中降低了混杂效应。我们通过评估Riluzole对肌萎缩性侧面硬化的进展,证明了生存和顺序结局的异质治疗效应估计的实际方面。
摘要 - 预计即将进行的Exascale计算系统将是一个主要挑战。需要将这些系统的复杂性隐藏在应用程序开发人员中,以提高可编程性。EXA2PRO编程框架旨在提高针对目标异质计算系统的应用程序的生产率。它基于封装低级平台特定优化的高级编程模型和抽象,并且由处理异质节点上的应用程序部署的运行时支持。它支持多种平台和加速器(CPU,GPU,基于FPGA的数据流引擎),从而使开发人员能够充分利用异质的计算系统,从而使更多的HPC应用程序可以达到Exascale Computing。使用来自不同域的四个HPC应用程序评估EXA2PRO框架。通过应用EXA2PRO框架,对应用程序进行了自动部署和评估,并在各种计算体系结构上进行了评估,使开发人员能够在加速器上获得性能结果,测试MPI群集上的可伸缩性,并有效地研究每个应用程序可以从该程度上使用不同类型的硬件重复源。
大数据和(深度)机器学习一直是数字医学中雄心勃勃的工具,但这些工具主要关注关联。对医学的干预是关于因果影响的。假设所有种群的效果大小相同,长期以来一直将平均治疗效应作为因果效应的量度。 但是,似乎没有“一定大小的所有”治疗方法在某些复杂疾病中起作用。 治疗效果可能因患者而异。 估计异质治疗效果(HTE)可能会对发展个性化治疗产生很大影响。 近年来出现了许多用于估算HTE的高级机器学习模型,但是对现实世界中医疗保健领域的翻译研究有限。 为了填补空白,我们审查并比较了最近的11种HTE估计方法,包括元学习者,代表性学习模型和基于树的模型。 我们根据全国医疗保健索赔数据进行了全面的基准实验,并将其应用于阿尔茨海默氏病药物重新使用。 我们在HETE估算领域的HTE估计分析中提供了一些挑战和机遇,以缩小创新的HTE模型与部署之间的差距,以解决现实世界中的医疗保健问题。长期以来一直将平均治疗效应作为因果效应的量度。但是,似乎没有“一定大小的所有”治疗方法在某些复杂疾病中起作用。治疗效果可能因患者而异。估计异质治疗效果(HTE)可能会对发展个性化治疗产生很大影响。近年来出现了许多用于估算HTE的高级机器学习模型,但是对现实世界中医疗保健领域的翻译研究有限。为了填补空白,我们审查并比较了最近的11种HTE估计方法,包括元学习者,代表性学习模型和基于树的模型。我们根据全国医疗保健索赔数据进行了全面的基准实验,并将其应用于阿尔茨海默氏病药物重新使用。我们在HETE估算领域的HTE估计分析中提供了一些挑战和机遇,以缩小创新的HTE模型与部署之间的差距,以解决现实世界中的医疗保健问题。
摘要深度学习(DL)模型的快速发展伴随着各种安全和安全挑战,例如对抗性攻击和后门攻击。通过分析当前有关DL攻击和防御的文献,我们发现攻击和防御之间的持续适应使得无法完全解决这些问题。在本文中,我们建议这种情况是由DL模型固有的AWS引起的,即非泄露性,不识别性和非身份能力。我们将这些问题称为内源性安全和保障(ESS)问题。为了减轻DL中的ESS问题,我们建议使用动态异质冗余(DHR)体系结构。我们认为,引入多样性对于解决ESS问题至关重要。为了验证这种方法的效果,我们跨DL的多个应用领域进行了各种案例研究。我们的实验结果证实,基于DHR体系结构构建DL系统比现有的DL防御策略更有效。
尽管现代催化行业的发展很快,但催化剂设计仍主要基于反复试验的实验手段。结果,催化剂开发和商业化的时间表可能需要10到20年。[1]理解催化中所述的微观机制被认为是催化行业的重要方面,即缩短开发新的异质催化剂的时间范围,其中在催化过程中涉及多个阶段。为促进催化剂,原子建模的结构 - 特性关系的理解,例如,基于力场的依赖计算和经典分子动力学(MD)模拟,已广泛用于探索催化机制和新型异构催化剂的催化机制和设计。在许多情况下,催化过程的原子建模取决于构成催化系统的多体系统的大量能量和力评估。需要考虑明确溶剂的效果,或者需要对纳米颗粒催化剂的尺寸依赖性特性进行建模时,问题就会变得更加复杂,这可以使基于密度功能理论(DFT)基于模拟的模拟可行。[2]因此,我们看到了MLIP在催化研究中的相对较高的应用,例如用于研究催化剂的吸附性能,结构预测和动力学。[3–5]
简介:表现出负血氧水平的大脑区域,依赖性脑血管反应性(BOLD-CVR)对二氧化碳(CO 2)的反应被认为遭受了完全耗尽的自动调节性脑血管储备的能力和表现出血管窃取现象。如果此假设是正确的,那么在基于电动机的BOLD FMRI研究中,血管窃取现象的存在应随后导致相等的FMRI信号响应(代谢增加而不会增加由于耗尽的储备能力而增加的脑血流),而其他功能性的脑组织则在其他功能性脑组织中。为了调查这一前提,这项研究的目的是进一步研究表现出负BOLD CVR的大脑区域中基于电动机的BOLD-FMRI信号反应。Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO 2 -calibrated motor task-based BOLD-fMRI study with a fingertapping para- digm and a subsequent BOLD-CVR study with a precisely controlled CO 2 -challenge during the same MRI ex- amination, were included.我们比较了双侧前后Gyri - i的BOLD-FMRI信号反应。 e。感兴趣的区域(ROI)与此ROI中的相应BOLD-CVR。使用对42个接受相同研究方案的健康个体的BOLD-FMRI任务研究的第二级组分析确定ROI。结果:BOLD-CVR的总体下降与ROI内BOLD-FMRI信号响应的降低有关。对于表现出阴性BOLD-CVR的患者,我们发现基于正电动机和负电动机的BOLD-FMRI信号反应。结论:我们表明,对CO 2的负CVR响应的存在与基于Motor的BOLD-FMRI信号反应有关,其中一些患者表现出更大的假定 - 负面BOLD-FMRI信号反应,而其他患者则表现出阳性的BOLD-FMRI信号反应。此发现可能表明
对恶意攻击的鲁棒性对于分布式学习至关重要。现有作品通常考虑经典的拜占庭式攻击模型,该模型假设有些工人可以将任意恶意消息发送给服务器并打扰分布式学习过程的聚合步骤。为了防止这种最严重的拜占庭袭击,已经提出了各种强大的聚合器。被证明它们是有效的,并且优于通常使用的平均值。在本文中,我们证明了强大的聚合器太保守了,对于一类弱但实用的恶意攻击,称为标签中毒攻击,一些工人的样本标签被毒害。令人惊讶的是,鉴于分布式数据具有足够的异质性,我们能够证明平均聚合器比理论上最新的鲁棒聚合器更强大。实际上,在这种情况下,平均聚合器的学习错误被证明是最佳的。实验结果证实了我们的理论发现,显示了在标签中毒攻击下平均聚合子的优越性。