本研究回顾了异质材料最先进的代表性体积元 (RVE) 生成技术。为此,我们提出了一种系统分类,考虑了各种工程感兴趣的异质材料。在这里,我们将异质固体分为多孔和非多孔介质,其中 0 < 空隙体积分数 < 1 和空隙体积分数 = 0。根据各种形态特征实现进一步细分。相应的生成方法分为三类:(i)通过微观结构的实验表征进行重建的实验方法,(ii)基于物理的方法,旨在模拟负责微观结构形成和演变的物理过程,以及(iii)仅专注于模仿形态的几何方法(忽略微观结构形成过程的物理基础)。这些包括各种数学工具,例如数字图像相关、镶嵌、随机场生成和微分方程求解器。为了完整起见,总结了在 RVE 生成的各个阶段使用的相关最新软件工具(商业或开源)。根据所考虑的方法的效率和对微结构的几何和拓扑特性的预测性能对其进行了审查。� 2018 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 - 锂离子电池的内部状况,特别是健康状况(SOH),需要仔细监控,以确保安全有效的操作。在本文中,我们提出了用于串联异质细胞的混合在线SOH估计管道。为具有数百至数千个单元的电池组实现单个单元格参数估计方案在计算上是棘手的。使用基于特征的自适应轮询对具有“极端”参数值的单元格进行了解决。此外,使用具有忘记因子的在线递归最小二乘正方形来估计被轮询细胞的电气参数。关键新颖性在于考虑参数的不确定状态依赖性。我们使用稀疏的高斯过程回归来获得参数边界,这是SOC和温度的函数。使用来自LI-NMC细胞的实验数据,通过模拟研究验证了管道。
摘要:异构网络 (HetNet) 是一种专用蜂窝平台,用于处理快速增长的预期数据流量。从通信角度来看,数据负载可以映射到通常放置在运营商网络上的能源负载。同时,可再生能源辅助网络可以减少化石燃料消耗,从而减少环境污染。本文提出了一种基于可再生能源的离网 HetNet 电源架构,该架构使用了一种新颖的能源共享模型。每个宏基站、微基站、微微基站或毫微微基站 (BS) 都使用太阳能光伏 (PV) 以及足够的储能设备。此外,宏基站和微基站还使用生物质发电机 (BG)。共置的宏基站和微基站通过端到端电阻线连接。通过权衡功耗和通信延迟,提出了一种具有睡眠机制的新型加权比例公平资源调度算法,用于非实时 (NRT) 应用。此外,针对窄带物联网 (IoT) 应用,提出的具有扩展不连续接收 (eDRX) 和省电模式 (PSM) 的算法可延长物联网设备的电池寿命。HOMER 优化软件用于执行最佳系统架构、经济和碳足迹分析,而蒙特卡罗模拟工具用于评估吞吐量和能效性能。通过孟加拉国农村地区的实际数据验证了提出的算法,从中可以看出,提出的电源架构节能、经济、可靠且环保。
摘要 激光粉末床熔化Al-8.3Fe-1.3V-1.8Si合金的工艺参数与组织和力学性能之间的关系研究较少,因此,选取两种参数的全致密合金来研究这一关键问题。结果表明:低功率和扫描速度的合金(S200)呈现扇壳状熔池和激光轨迹,而另一种合金(S350)呈现更深更宽的熔池。两种合金均获得了非均匀微观组织,熔池(MP)中没有第二相,熔池边界(MPB)中有纳米相。MP和MPB中固溶强化和Orowan强化的差异导致压缩屈服强度的差异(S200:380±14 MPa和S350:705±16 MPa),非均匀纳米硬度导致不同的裂纹行为和失效应变。研究表明,调整工艺参数是控制该合金组织和力学性能的有效方法。
SIP 正在成为新的 SOC • 模块化方法与单片方法 • 并非每个逻辑功能 (IP) 都需要在相同的工艺节点 (HI) 中进行设计 • 利用小芯片形式的 IP • 目前小芯片集成在硅中介层上;薄膜层压板正在兴起 • 包括最新的 IC 封装 2.5D、3D、FOWLP 技术 • 下一代所需的电路板设计专业知识
Xinni Xiong A,Iris K.M. div> Yu A,B,Danie C.W. div> tsang a, *,liz len a,zhish su,changwei d,ship D,H。Clar,D dd>Xinni Xiong A,Iris K.M. div>Yu A,B,Danie C.W. div> tsang a, *,liz len a,zhish su,changwei d,ship D,H。Clar,D dd>Yu A,B,Danie C.W. div>tsang a, *,liz len a,zhish su,changwei d,ship D,H。Clar,D dd>
摘要 - 预计即将进行的Exascale计算系统将是一个主要挑战。需要将这些系统的复杂性隐藏在应用程序开发人员中,以提高可编程性。EXA2PRO编程框架旨在提高针对目标异质计算系统的应用程序的生产率。它基于封装低级平台特定优化的高级编程模型和抽象,并且由处理异质节点上的应用程序部署的运行时支持。它支持多种平台和加速器(CPU,GPU,基于FPGA的数据流引擎),从而使开发人员能够充分利用异质的计算系统,从而使更多的HPC应用程序可以达到Exascale Computing。使用来自不同域的四个HPC应用程序评估EXA2PRO框架。通过应用EXA2PRO框架,对应用程序进行了自动部署和评估,并在各种计算体系结构上进行了评估,使开发人员能够在加速器上获得性能结果,测试MPI群集上的可伸缩性,并有效地研究每个应用程序可以从该程度上使用不同类型的硬件重复源。
i n [1],已报道了多个芯片在重新分布层(RDL)(RDL)上的设计,材料,过程和组装 - 首先是带有风扇淘汰面板级包装(FOPLP)的第一个基材。RDL-第一个底物[1]在临时玻璃载体上制造,由三个RDL组成,其金属层线宽和间距(L/S)等于2/2、5/5和10/10 m m。由于工艺顺序(2/2 m M金属L/sift,5/5 m m秒和10/10 m m三分之一)在制造RDL-第1个基材时,需要将RDL-FIR-FIRSTRATE转移到另一个临时载体上。然后,将第一个临时玻璃载体拆除,并执行芯片到基底键合,以便可以将芯片直接连接到2/2-M M Metal L/S RDL。然而,由于第二辆载体的粘结和第一个载体的拆卸导致了较大的扭曲,因此焊接质量质量的芯片在RDL底物上的产量非常低。因此,在[1]热压缩键中,一次使用一个芯片。在这项研究中,提出了制造RDL底物的新工艺顺序(10/10 m M Metal L/siftim,第一个,5/5 m m秒和2/2 m m三分之二)。在这种情况下,无需将RDL衬底转移到另一架载体上,然后首先通过小强度的热压缩芯片到rdl-substrate键合,然后立即焊接所有芯片的质量。通过滴测试证明了异质集成包的印刷电路板(PCB)组件的可靠性。讨论了结果和失败分析。
本文提出了一种分散式、分布式制导与控制方案,将异构卫星组件群组合成大型卫星结构。异构卫星群的组件卫星的选择以提高最终形状的灵活性,其灵感来自晶体结构和伊斯兰瓷砖艺术。在选择理想的基本构建模块后,进行基本的纳米卫星级卫星设计,以协助涉及姿态控制的模拟。群体轨道建造算法 (SOCA) 是一种制导和控制算法,用于实现在轨组装所需的有限类型异构性和对接能力。该算法由两部分组成:分布式拍卖使用障碍函数来确保为每个目标选择合适的代理;轨迹生成部分利用模型预测控制和顺序凸规划来实现到达所需目标点的最佳无碰撞轨迹,即使在非线性系统动力学的情况下也是如此。优化约束使用边界层来确定是否应应用防撞约束或对接约束。该算法在模拟扰动 6 自由度航天器动态环境中针对平面和非平面最终结构以及两个机器人平台(包括一群无摩擦航天器模拟机器人)进行了测试。
检索授权的语言模型(RALM)将大型语言模型(LLM)与矢量数据库结合在一起,以检索文本生成期间的上下文知识。这种策略即使使用较小的模型也有助于产生令人印象深刻的发电质量,从而通过数量级来调查计算需求。为了有效而灵活地为Ralms提供服务,我们提出了Chameleon,这是一种杂项加速器系统,将LLM和矢量搜索加速器集成在分解的体系结构中。异质性在推理和检索方面有效地提供了有效的服务,而分类允许独立缩放LLM和向量搜索加速器来满足各种RALM要求。我们的变色龙原型在FPGAS上实现了向量搜索加速器,并将LLM推理分配给GPU,并用CPU作为群集坐标。与混合CPU-GPU架构相比,在各种RALMS上进行了评估,延迟降低2.16倍,吞吐量的延迟3.18倍。有希望的结果为采用异质加速器的方式铺平了道路,不仅是LLM推断,而且还可以在未来的RALM系统中进行矢量搜索。
