- 需要大量“真实”数据 - 这些数据可能会有偏差 - 示例:统计差异箱的数量 (NDB) - 示例:MuseGAN 客观指标(下一张幻灯片) - 人类专业知识
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
选择机器学习模型,用于识别两个类之间的最佳阈值,例如非表达和表现性的MIDI轨道,需要仔细考虑数据的特定char-cher-cher-cher-cher-tecteristical和分析目标。逻辑回归通常受到青睐。该模型通过对给定输入属于两个类之一的概率进行建模,为分类提供了一个清晰,可解释的框架。逻辑回归的输出是0到1之间的连续概率得分,可以直接确定和调整决策阈值。这种简单性和直接性使逻辑回归特别有吸引力,当时主要目标是确定可靠且易于解释的阈值。
当我们在时间压力下或存在很多不确定性的情况下解决问题时,我们往往不会使用严格的逻辑推理。相反,我们倾向于求助于一种或多种思维捷径,也称为启发式方法来解决问题。使用启发式方法的好处是,它们可以让我们快速做出决策,而经历严格的逻辑推理的所有步骤可能会令人精疲力竭且耗时。缺点是启发式推理会导致我们在决策中出现特定类型的错误。研究表明,专家和非专家都使用启发式方法解决各行各业的问题,包括医学、商业、政治、执法,甚至科学。研究人员还发现了多种不同的启发式方法。在本文中,我们将重点介绍三种研究最广泛的启发式方法,并展示它们如何影响现实生活,甚至是生死攸关的决策。
摘要 - 为了有效计算动态变化的环境中的无机器人运动轨迹,我们介绍了一种新型的启发式启发式启发式方法的方法的结果。将机器人环境分为静态和动态元素,我们使用静态零件来初始化确定性路线图,该路线图提供了最终路径成本的下限,如知情的启发式方法,用于快速路径找到。这些启发式方法指导搜索树以探索运行时的路线图。搜索树使用有关动态环境的模糊碰撞检查检查边缘。最后,启发式树利用了从模糊碰撞检查模块中提供的知识,并更新了路径成本的下限。正如我们在现实世界实验中所证明的那样,这三个组件形成的闭环会显着加速计划程序。另一个回溯步骤可确保所得路径的可行性。模拟和现实世界中的实验表明,Hiro可以发现无碰撞的路径比有或没有对环境的先验知识的基线方法快得多。
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。WL-goose是实现这些壮举的首个计划模型学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造和描述用于计划的逻辑特征之间的联系。
人类交流越来越多地与人工智能生成的语言混合在一起。在聊天、电子邮件和社交媒体中,人工智能系统可以生成智能回复、自动完成和翻译。人工智能生成的语言通常不会被识别为人类语言,而是冒充人类语言,这引发了人们对新型欺骗和操纵形式的担忧。在这里,我们研究人类如何辨别最个人化和最重要的语言形式之一——自我呈现——是否由人工智能生成。在六项实验中,参与者(N = 4,600)试图检测由最先进的语言模型生成的自我呈现。在专业、酒店和约会环境中,我们发现人类无法检测人工智能生成的自我呈现。我们的研究结果表明,人类对人工智能生成语言的判断受到直觉但有缺陷的启发式方法的限制,例如将第一人称代词、自发措辞或家庭话题与人性联系起来。我们证明这些启发式方法使人类对生成语言的判断变得可预测和可操纵,从而使人工智能系统能够生成被认为比人类更人性化的语言。我们讨论了诸如 AI 口音之类的解决方案,以减少生成语言的欺骗潜力,限制对人类直觉的颠覆。
近年来,开发支持人工智能设计的工具和辅助工具已成为热门话题。谷歌为从业者制定了人工智能指南 [26];Amershi 等人。[3] 制定了 18 条人机交互指南;Corbett 等人。[15] 提出“交互式机器学习启发式评估”;周等人。[74] 提出了一种称为材料生命周期思维 (MLT) 的设计方法,该方法将 ML 视为具有整个生命周期的设计材料。然而,这些方法主要在开发过程的后期阶段有用。在早期概念设计阶段,缺乏支持人工智能驱动的用户体验设计的工具,从业者在理解人工智能能力和为给定的用户体验问题设想新的人工智能解决方案方面面临挑战 [72]。构思决定了设计的类型,在新颖概念的开发和商业成功中发挥着重要作用 [30]。然而,很少有研究支持从业者在概念设计阶段为人工智能领域生成新颖和多样化的概念。
幸运的是,麦克斯韦方程从亚原子长度尺度到银河系长度尺度都是精确的。在真空中,它们已被证实具有极高的精度(见第 1.1 节)。此外,自 20 世纪 60 年代以来的几十年里,麦克斯韦方程已经能够得到许多复杂结构的数值解。这种用数值方法求解麦克斯韦方程的领域被称为计算电磁学,本课程后面将对此进行讨论。现在有许多商业软件可以高精度地求解麦克斯韦方程。因此,如今的设计工程师不需要更高的数学和物理知识,只要学习如何使用这些商业软件就可以获得麦克斯韦方程的解。这对许多设计工程师来说是一个福音:通过运行这些软件并进行试错,就可以设计出精彩的系统。在实际制造硬件之前使用模拟进行电磁设计的艺术被称为虚拟原型。