• 营业额增长 6.7%,反映了与零售物价指数挂钩的年度定期租金收入增加 • 由于普利茅斯的收入增加和补救成本的回收,EBITDA 强劲增长 6.8% • 2023/24 年度入住率为 97.9% • 债券投资组合中总额达 730 万英镑的重大资产投资计划 • 2023/24 年度债务偿还覆盖率远高于锁定触发值 • 标准普尔年度信用评级为 A-(展望稳定),穆迪年度信用评级为 Baa1(展望稳定) 首席执行官 Elaine Hewitt 表示:“尽管面临当前的行业逆风和宏观经济挑战,但我们 2023/24 财年的业绩证明了 UPP 商业模式的韧性。国内市场的学生人数持续增长,但国际研究生招生人数同比下降。对排名较高的大学的需求依然强劲。 UPP Bond 1 Holdings Limited 的营业额同比增长 6.7% 至 7960 万英镑,毛利润增长 2.7% 至 5310 万英镑。EBITDA 也增长至 5150 万英镑,这主要是由于年度 RPI 挂钩租金上涨以及 Plymouth AssetCo 资产补救成本的回收。展望 2024/25 学年,除诺丁汉特伦特大学的学生人数减少外,Bond 投资组合的入住率很高。我们正在与大学合作,以提高本学年的入住率。在 UPP 集团,我们继续关注环境和社会可持续性,以造福我们的大学合作伙伴、学生居民和我们的员工。我们还在 2023/24 学年(最新报告年度)获得了 93% 的 GRESB(全球房地产可持续性基准)评分。 GRESB 是资产管理和房地产行业的外部标准,提供 ESG(环境、社会和治理)绩效的独立定量评估。UPP Bond 1 Holdings 在本财年受益于一项重大的资产投资工程计划。这些资产仍处于有利位置,提供各种住宿,价格全包,并由我们经验丰富的运营团队提供服务。对这些工程的投资将持续到下一个学年。”
1。Jacobs,S.,McAllister,R.,Gillo,K.,Cook,R.,Wolf,T.,Hassani,P.,Ulbrich-Baker,J.,Mapa,D.,Adkins,D.,Adkins,N.,McDonald,D.,Chen,C.机器人与自动化杂志,2024年10月(如果:5.4)。2。Yerebakan,M。O.,Gu,Y.,Gross,J。,Hu,B。,“人类与动物协作过程中生物力学和心理工作量的评估”,《人为因素》,00187208241254696,2024年5月(如果:2.9)。3。Pooley,A.,Gao,M.,Sharma,A.,Barnaby,S.,Gu,Y.,Gross,J。,“通过霍克启发的群体相互作用分析无人机热飙升能量管理”,生物学,8(1),124; 2023年3月(如果:3.7)。4。Kilic,C.,Gu,Y.,Gross,J。,“在感知降级的外星环境中,行星流浪者的本体感受性滑移检测”,Field Robotics。2,1754–1778。doi:0.55417/fr.2022054。2022年8月。5。Chen,Y.,Yang,C.,Gu,Y.,Hu,B。,“移动机器人对批发和零售贸易环境中人类安全感知和系统生产力的影响:一项试点研究,“ IEEE对人机系统系统的交易,2022年5月(如果:3.4)。6。Kilic, C., Martinez, B., Tatsch, C., Beard, J., Strader, J., Das, S., Ross, D., Gu, Y., Pereira, G., Gross, J., “NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations,” IEEE Aerospace and Electronic Systems Magazine, Dec 2021 (IF: 1.6).7。8。9。Yang,C.,Strader,J.,Gu,Y。,“基于地图匹配的合作定位的可扩展框架”,传感器,9月2021年(如果:3.6)。Hedrick,G.,Gu,Y。,“火星样本返回流浪者的地形遍历遍历计划”,高级机器人技术,2021年7月(如果:1.7)。史密斯(T.
1。Lee J. †,Cooley D.,Wagner A.M.,Liston G.E. (2024+)通过参数的线性映射来投射未来的校准方法。 被接受的环境和生态统计。 2024年10月25日。 2。 Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。 时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。 3。 Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。 应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。 4。 Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。 应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。 5。 Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Lee J.†,Cooley D.,Wagner A.M.,Liston G.E.(2024+)通过参数的线性映射来投射未来的校准方法。被接受的环境和生态统计。2024年10月25日。2。Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。3。Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。4。Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。5。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。6。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R.(2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。7。修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。环境,32:e2656。https://doi.org/10.1002/env.2656 8。 Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。 保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。 江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。https://doi.org/10.1002/env.2656 8。Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。江Y.,Cooley D.,Wehner M.P.(2020)主要成分分析,用于极端和对美国降水的应用。气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。Cooley D.,Thibaud E.(2019)。对高维度的依赖性分解。Biometrika,106:587-604。doi:10.1093/biomet/asz028。11。Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Hewitt J.†,Fix M.J.†,Hoeting J.A.,Cooley D.S.(2019)。通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。jabes; 24:426-443。doi:10.1007/s13253-019-00356-4 12。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。jabes; 24:484-501。doi:10.1007/s13253-019-00356-4 13。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F.(2019)。一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。14。Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。网格降水数据集中极端的一致性。气候动力学,52:6651-6670。doi:10.1007/s00382-018-4537-0。15。修复M.†,Cooley D.,Sain S.R.,Tebaldi C.(2018)。在RCP8.5和RCP4.5下,美国降水极端的比较与模式缩放的应用。气候变化,146(3),335-347。doi:10.1007/s10584-016-1656-7。
1。背包语言模型。在计算语言学协会年会(ACL)年会2023年。接受率:23.5%未偿还纸张奖:39 /3872纸提交。约翰·休伊特(John Hewitt),约翰·加斯敦(John Glongstun),克里斯托弗·D·曼宁(Christopher D. Manning),珀西·梁(Percy Liang)。2。通过生成预训练的旋律转录。在国际音乐信息检索研讨会(ISMIR)2022中。接受率:43.3%的克里斯·多纳休(Chris Donahue),约翰·加斯敦(John Glongstun),珀西·梁(Percy Liang)。3。扩散lm改善可控文本生成。神经信息处理系统的进步(神经)2022。接受率:25.6%的口头呈递。Xiang Lisa Li,John Glongstun,Ishaan Gulrajani,Percy Liang,Tatsunori B. Hashimoto。 4。 淡紫色:使用发散边界来测量神经文本和人类文本之间的差距。 神经信息处理系统的进步(神经)2021。 接受率:25.7%未偿还纸张奖:6 /9122纸质提交。 奎师那·普鲁图拉(Krishna Pillutla),斯瓦巴(Swabha Swayamdipta),罗文·泽勒斯(Rowan Zellers),约翰·盖斯坦(John Gondstun),肖恩·威尔克(Sean Welleck),Yejin Choi,Zaid Harchaoui。 5。 通过Langevin Dynamics从自回旋模型进行平行和灵活的采样。 在机器学习国际会议(ICML)2021中。 接受率:21.5%Vivek Jayaram*,John Glongstun*(*同等贡献)。 6。 使用连续时间梯度更快地学习。 动态与控制学习(L4DC)2021。 7。 8。 9。 10。Xiang Lisa Li,John Glongstun,Ishaan Gulrajani,Percy Liang,Tatsunori B. Hashimoto。4。淡紫色:使用发散边界来测量神经文本和人类文本之间的差距。神经信息处理系统的进步(神经)2021。接受率:25.7%未偿还纸张奖:6 /9122纸质提交。奎师那·普鲁图拉(Krishna Pillutla),斯瓦巴(Swabha Swayamdipta),罗文·泽勒斯(Rowan Zellers),约翰·盖斯坦(John Gondstun),肖恩·威尔克(Sean Welleck),Yejin Choi,Zaid Harchaoui。5。通过Langevin Dynamics从自回旋模型进行平行和灵活的采样。在机器学习国际会议(ICML)2021中。接受率:21.5%Vivek Jayaram*,John Glongstun*(*同等贡献)。6。使用连续时间梯度更快地学习。动态与控制学习(L4DC)2021。7。8。9。10。塞缪尔·阿恩斯沃思(Samuel Ainsworth),肯德尔·洛里(Kendall Lowrey),约翰·康斯敦(John Glongstun),扎伊德·哈科伊(Zaid Harchaoui),悉达多·斯里尼瓦萨(Siddhartha Srinivasa)。一种信息瓶颈方法,用于控制理由提取中的简洁性。自然语言处理中的经验方法(EMNLP)2020。接受率:24.5%Bhargavi Paranjape,Mandar Joshi,John Glongstun,Hannaneh Hajishirzi,Luke Zettlemoyer。用深的生成先验的源分离。在国际机器学习会议(ICML)2020中。接受率:21.8%Vivek Jayaram*,John Glongstun*(*同等贡献)。卷积作曲家分类。在国际音乐信息检索研讨会(ISMIR)2019中。接受率:45.1%苛刻的Verma,John Glongstun。耦合复发模型,用于复音音乐组成。在国际音乐信息检索研讨会(ISMIR)2019中。接受率:45.1%John Glongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。11。监督音乐转录的不断增长和数据增强。在国际声学,言语和信号处理(ICASSP)2018中。接受率:49.7%的口头介绍。John Gongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。12。用于多个F0估计的频域卷积。Mirex摘要(技术报告)2017。John Gongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。13。音乐网:从头开始学习音乐的功能。在2017年国际学习表征会议(ICLR)。接受率:39.1%John Glongstun,Zaid Harchaoui,Sham M. Kakade。
根据《1991 年资源管理法》(RMA)第 34A 条,卡特顿区议会(CDC)于 2024 年 7 月任命独立专员 Mark St.Clair,审理并裁定 Masterton Solar and Energy Storage Limited(申请人)提出的 100 兆瓦可再生能源项目的申请,即建立一个农业光伏开发项目(太阳能农场),包括太阳能电池板、逆变器、变压器、电池储能系统、变电站、现场办公室以及与附近位于卡特顿 3954A 国道 2 号的 Masterton 变电站的连接。背景情况是,该申请于 2024 年 7 月 3 日公开通知,提交期于 2024 年 7 月 30 日结束。提交期结束时,已提交三 (3) 份意见书。两份反对意见书,提交人不希望发表意见,一份支持意见书来自 WR Telford 先生,他希望发表意见。特尔福德先生后来撤回了他的申辩请求,同样,申请人也表示不希望被听取。由于申请人和提交人都不希望被听取,因此根据理事会的授权手册,该申请转为不经听证会进行审议,但决策权仍由独立听证专员掌握。2024 年 10 月 21 日,我通过理事会收到了 P 先生的律师 P Tancock 女士和 H Trotman 女士提交的接受延迟提交的请求,以及延迟提交的副本。在同一封信中,我收到了 P 先生和 M Cowgill 女士提交的延迟提交。同样在 2024 年 10 月 22 日,我通过理事会收到了 J Greathead 女士、I Hamilton 先生和 R Whewell 女士、H Pocknall 女士和 M Hewitt 先生、G 先生和 R Fisher 女士以及 S MacArthur 先生提交的另外五份延迟提交。附件 1 中包含了我迄今为止收到的所有逾期提交的副本。在此阶段,我记录我需要首先决定是否接受逾期提交,然后再考虑提交中提出的任何实质性问题。因此,我将 2024 年 7 月 3 日至 2024 年 7 月 30 日正式提交期之外提交的所有提交称为“接受逾期提交的请求”。为了完整起见,我记录在案,2024 年 10 月 22 日,CDC 根据 RMA 第 34A 条特别任命我决定接受逾期提交的请求。我注意到,唯一一份逾期提交表明,如果其他人提出类似的意见,他们会考虑在听证会上与他们一起提出联合案件,这份逾期提交来自 P 先生和 M Cowgill 女士。从接受逾期提交的请求中尚不清楚提交者是否希望被听取意见,这将需要听证会。目前还不清楚这些逾期提交的文件是否已转发给申请人。附件 1 中对这些意见的附件有效地解决了后一个问题。
迁移流离失所惠特尼铝数分钟出租车特立尼达彩虹罗伯托感动观察观众责怪莱茵约翰偷窃封闭的国家增加免疫自由式wwe反对回合注射苔藓菲利克斯赫尔曼消耗致命场景位置dos静态。伍斯特iTunes穆罕默德温布尔登das超过温泉穆斯林假宣传半径供应商望远镜进步世仇范围弗格森酋长社会学弗莱明砂岩风暴莫妮卡横向下沉更难马车誓言起重机尖峰事故林吉特白天广泛子公司卡尔教授布雷迪准将恐慌造船厂规范台北精制先知选美奉献纳斯卡连续性雪松滑雪德雷克水下交付坐标受体反射杰弗里安德里亚听众修道院。牌匾结合偏见温斯顿纸浆碰撞马克卡牢固固定声明 at&t 地平线德黑兰向上隧道斗争形状库马尔清洁谈判 oz 接受西藏哈萨克斯坦成功贝克商店匹配@二进制米德兰兹贝德福德废弃特蕾西玻利维亚停止多彩半决赛加州大学洛杉矶分校红人新娘洪水发行随后农民排名过剩埋葬财政大气动机迷你学术麦克斯韦捷克斯洛伐克米奇托莱多反馈意识形态运作传奇。精确君士坦丁灰烬核探索游艇解决仙女集体动乱警报天文学少数民族种族灭绝人质加尔各答选择性半球神双边码头生态蜂蜜银行绝对烧毁吉隆坡现象