摘要:由于量子技术在量子技术中的潜在应用,六角形氮化硼(HBN)的颜色中心已成为经过深入研究的系统。已经制造出了各种各样的缺陷,但是对于许多缺陷而言,原子来源仍然不清楚。缺陷的直接成像在技术上非常具有挑战性,特别是因为在衍射有限的位置,有许多缺陷,然后必须识别出光学活动的缺陷。另一种方法是将光物理特性与理论模拟进行比较,并确定哪个缺陷具有匹配的签名。已经证明,单个属性不足,导致错误弥补。在这里,我们发布了一个基于功能理论的密度可搜索的在线数据库,涵盖了HBN缺陷的电子结构(257个三重态和211个单元配置),以及它们的光物理指纹(激发态态寿命,量子效率,过渡偶极时间和方向和方向,极化可见度等)。所有数据都是开源的,可以在https://h-bn.info上公开访问,并且可以下载。可以输入实验观察到的缺陷签名,数据库将输出可能的候选物,可以通过输入尽可能多的观察到的属性来缩小候选物。数据库将不断更新,并具有更多的缺陷和新的光物理属性(任何用户也可以专门要求)。因此,数据库允许一个人可靠地识别缺陷,还可以研究哪些缺陷对于磁场传感或量子存储器应用可能有希望。
k -1。六角硼硝化硼(H-BN)木制的含量是有望用于下一代电子热管理的热导电材料。这些电绝缘但热导导的H-BN平流可以作为热填料掺入,以将高𝜿赋予聚合物基于聚合物的复合材料。嵌入了几层H-BN(FLH-BN)植物的基于纤维素的复合材料,实现了使用成本效率和可伸缩程序制备的A liby21.7 W m-1 K-1。该值比在嵌入了大量H-BN的复合材料中观察到的值高5倍(BH-BN,𝜿≈4.5w m-1 k-1),表明在H-BN聚合物组合的H 𝜿 𝜿上,FLH-BN的上i上i上的益处。当用作热界面材料(TIM)的糊剂时,与在同一H-BN负载下的BH-BN综合材料相比,在功率密度(H)下,以2.48 W CM-2的功率密度(H)将最高温度(T MAX)降低24.5°C。结果提供了一种有效的方法,可以改善TIMS的基于纤维素的热糊剂的𝜿,并证明了它们在集成电路(ICS)和高功率电子设备中的热量耗散的生存能力。
Authorised for use by the following organisations and/or services All NHS England commissioned immunisation services within • Bath & North East Somerset, Swindon, and Wiltshire • Bristol, North Somerset, and South Gloucestershire • Cornwall and the Isles of Scilly • Devon • Dorset • Gloucestershire • Somerset Limitations to authorisation This patient group direction (PGD) must only be used by the registered在第3节中确定的医疗保健从业人员以其组织的命名,以根据其命名。必须使用NHS England(西南)授权的最新最新版本。该PGD包括在国家免疫计划中对个体的疫苗接种。该PGD的用户应注意,在委托某些小组免疫的地方,该PGD不构成允许的许可,即超出他们被委托进行免疫的群体之外的免疫接种。
摘要:表征2D材料中的缺陷,例如沉积化学蒸气(CVD)的裂纹 - 生长的六边形氮化硼(HBN)对于评估材料质量和可靠性至关重要。传统的特征方法通常是耗时且主观的,可以受到HBN的光学对比度有限的阻碍。为了解决这个问题,我们使用Matlab的Image Labeler并进行了对细致的注释和训练,利用了转移的CVD生长的HBN膜中的Yolov8n深学习模型来进行自动裂纹检测。该模型展示了有希望的裂纹检测能力,准确地识别了不同大小和复杂性的裂纹,并且损失曲线分析揭示了渐进式学习。然而,精确和回忆之间的权衡突出了需要进一步完善的必要性,尤其是在区分多层HBN地区的精细裂缝方面。这项研究证明了基于ML的方法简化2D材料表征并加速其集成到高级设备中的潜力。
持续的有机污染物(POP),其中包括全球广泛使用的农药和工业化学物质,对人类健康构成了秘密威胁。β -heacachlorocyclohexane(β-HCH)是一种具有惊人稳定性的有机氯农药,仍然在许多国家非法倾倒,并被认为是多种致病机制的原因。这项研究代表了暴露于特异性靶向神经元细胞(N2A),小胶质细胞(BV -2)和C57BL/6小鼠的β -HCH引起的神经毒性作用的开创性探索。如Western印迹和QPCR分析所示,β-HCH的给药触发了NF-κB的调节,NF-κB是影响炎症和促炎性细胞因子表达的关键因素。我们通过Proteo MIC和Western印迹技术证明了β -HCH诱导的H3组蛋白的表观遗传修饰。N2a中H3K9和H3K27的组蛋白乙酰化增加,在用β -HCH施用的C57BL/6小鼠的前额叶皮层中,它在BV -2细胞和海马群中降低。我们还通过新的对象识别测试(NORT)和对象位置识别任务(OPRT)行为测试对识别记忆和空间导航产生了严重的有害影响。认知障碍与BDNF和SNAP-25基因的表达降低有关,后者是参与突触功能和活性的介体。获得的结果扩大了我们对β -HCH暴露产生的有害影响的理解,通过强调其对神经疾病的发病机理的影响。这些发现将支持干预计划,以限制暴露于POPS引起的风险。监管机构应阻止进一步的非法使用,从而造成环境危害并危害人类和动物健康。
十六起糖细胞环烷(HBCD)是在产品中添加的阻燃剂,以减少火灾的传播。截至2018年,美国制造商已经停止使用HBCD在产品中。但是,该化学物质以前曾用于泡沫绝缘材料中,用于建筑和建造以及家用物品的制造,包括家具,床垫,壁板,窗帘和电子产品。明尼苏达州法规325F.071限制了儿童产品的制造,销售和分销,软垫住宅家具,住宅纺织品以及含有HBCD的床垫,其中任何产品中的任何一部分都大于每百万的零件。HBCD与婴儿,幼儿和孕妇有关的潜在健康风险有关。
摘要:用于固态钠(NA)电池的复合固体聚合物电解质(CSP),由于其高模量,良好的机械性能和相对于液体电解质的总体安全性而具有吸引力。重要的CSPE特性(例如结晶度和离子电导率)与填充材料的物理化学特征紧密相关。在这项工作中,我们研究了2D六角硼(2D H-BN)含量如何在聚(氧化乙烷)(PEO)基于Na-ion的CSPE中使用NANO 3作为模型盐进行Na-ion传导的聚(PEO)CSPES中的流动聚合物结晶度和离子电导率。使用X射线差异(XRD),差异扫描量热法(DSC)和电化学阻抗光谱镜(EIS),我们发现聚合物结晶度在H-BN浮动的存在中会增加,而总离子电导率相对降低了相对降低的样品。量子机械DFT计算揭示了H-BN与两个离子盐的两个离子结合的能力,更强烈地与Na +阳离子结合,迄今为止,在基于Na的聚合物电解质的情况下尚未报道。这项工作中的实验和计算效果的组合提供了关键的物理见解,以了解填充剂的几何特征和化学特征(即刘易斯酸度和刘易斯碱度)在CSP的设计中用于Na-ion传导。
技术讲座“在感知和体现中理解语言” • 谷歌,加利福尼亚州山景城 2021 年 2 月 • Facebook,纽约州纽约市 2021 年 2 月 • Waymo,加利福尼亚州山景城 2021 年 3 月 • 华盛顿大学,华盛顿州西雅图 2021 年 2 月 • 加利福尼亚大学,加利福尼亚州伯克利市 2021 年 3 月 • 密歇根大学,密歇根州安娜堡 2021 年 3 月 • 加利福尼亚大学,加利福尼亚州圣克鲁斯市 2021 年 4 月
2023 年是极度动荡的一年。今年上半年,我们报告了有史以来最强劲的销售数据,实现了 15% 的有机销售额增长和 17.6% 的 EBITA 利润率。下半年,我们在光纤解决方案领域度过了充满挑战的市场,这主要是受宏观环境的推动,利率上升和成本通胀影响了投资意愿。我们通过降低库存水平并做出艰难但必要的决定来启动成本削减计划,以应对需求疲软。我们还在恶劣环境和数据中心等战略重点领域进行了重要收购,以进一步加强我们的多元化。总体而言,这为 2023 财年带来了强劲的经营现金流、24% 的销售额增长和 15.1% 的 EBITA 利润率。
许可: 本作品已获得 Creative Commons Attribution 4.0 International 许可。阅读完整许可