摘要:最近的计算研究预测了许多新的三元氮化物,揭示了这一尚未充分探索的相空间中的合成机会。然而,合成新的三元氮化物很困难,部分原因是中间相和产物相通常具有较高的内聚能,会抑制扩散。本文,我们报告了通过 Ca 3 N 2 和 M Cl 4(M = Zr、Hf)之间的固态复分解反应合成两个新相,钙锆氮化物(CaZrN 2 )和钙铪氮化物(CaHfN 2 )。虽然反应名义上以 1:1 的前体比例通过 Ca 3 N 2 + M Cl 4 → Ca MN 2 + 2 CaCl 2 进行到目标相,但以这种方式制备的反应会产生缺钙材料(Ca x M 2 − x N 2 ,x < 1)。高分辨率同步加速器粉末 X 射线衍射证实,需要少量过量的 Ca 3 N 2 (约 20 mol %) 才能产生化学计量的 Ca MN 2 。原位同步加速器 X 射线衍射研究表明,名义化学计量反应在反应途径早期产生 Zr 3+ 中间体,需要过量的 Ca 3 N 2 将 Zr 3+ 中间体重新氧化回 CaZrN 2 的 Zr 4+ 氧化态。对计算得出的化学势图的分析合理化了这种合成方法及其与 MgZrN 2 合成的对比。这些发现还强调了原位衍射研究和计算热化学在为合成提供机械指导方面的实用性。■ 简介
nb 20 re 20 zr 20 hf 20 ti 20,和(tizrnbta)1- x w x。[19,20,41]与晚期金属联合使用,
寻找具有直接带隙和高载流子迁移率的二维 (2D) 稳定材料因其在电子设备中的应用而受到广泛关注。利用第一性原理计算和粒子群优化 (PSO) 方法,我们预测了一种具有二维空间全局最小值的新型 2D 稳定材料 (HfN 2 单层)。HfN 2 单层具有直接带隙 (∼ 1.46 eV),根据变形势理论预测其具有高载流子迁移率 (∼ 10 3 cm 2 · V − 1 · s − 1)。在应变条件下,通过施加简单的外部应变可以很好地保持和灵活调节直接带隙。此外,新预测的 HfN 2 单层具有良好的热稳定性、动力学稳定性和机械稳定性,这通过从头算分子动力学模拟、声子色散和弹性常数得到了验证。这些结果表明 HfN 2 单层是未来微电子器件中很有前途的候选材料。