HGCDTE APD检测器模块电信是在CEA/LETI上开发的,用于大气刺激和自由空间光学(FSO)。开发是由可以在每个检测器模块中调整的通用子组件的设计和制造驱动的,以满足每个应用程序的特定检测器要求。从目前为大气激光雷达开发的探测器模块所设定的挑战详细介绍了此类子组件的优化,该挑战在AIRBUS的R&T CNES项目的范围内以及H2020 Project holdon的R&T项目范围以及FSO,以及在ESA项目的范围内与Mynaric Laserc的lasercom lasercom gmbhhs of airbus和FSO。最近已将两个检测器模块传递到空中客车DS进行广泛的LIDAR仿真测试。表明,与先前开发的大面积检测器相比,输入噪声,NEP = 10-15fw/√Hz(5个光子RMS)已减少了三分,尽管带宽已增加到180 MHz,以响应高空间深度分辨率的要求。在发现短光脉冲后200 ns时,时间延迟为10 -4,这与诸如测深分析之类的激光雷达应用兼容。
在作为胶体量子点(CQD)产生的材料中,HGTE具有特殊的状态,是覆盖从可见光到THZ的整个红外范围的唯一材料(0.7-100μm)。这种独特的特性是由其电子结构产生的,结合了空气稳定性和电荷传导能力,在过去的二十年中产生了一致且庞大的效果,以产生和改善HGTE CQD。同时,HGTE CQD与中波红外的任何其他胶体替代品更先进,内容涉及其整合到高级光子和光电应用中。在这里,HGTE CQD相对于材料的生长,电子结构建模,其整合到光子结构中的最新发展及其作为从单个元素设备向复杂传感器和红外成像器的活动材料传递的传递。最后,还包括有关该材料对行业的潜力的讨论,还包括相对于材料和设备设计,在低技术准备水平的经济和生产方面增加了新的挑战。
HgCdTe 雪崩光电二极管 (APD) 由 CEA/Leti 开发,用于实现需要检测每个空间和/或时间箱中少量光子所含信息的应用,例如 LiDAR 和自由空间光通信。此类探测器的要求与应用密切相关,这就是为什么 HgCdTe APD 技术和用于提取检测到的光电流的近距离电子设备都需要针对每种应用进行优化的原因。本通讯报告了在 H2020 项目 HOLDON 范围内制造的高动态范围 LiDAR 应用探测器和与 Mynaric Lasercom AG 合作制造的高数据速率 FSO 的开发结果。对于 FSO 应用,我们已测量了直径为 10 µm 的 APD 在单位增益下的 10 GHz 带宽。在更高的 APD 增益和直径下,BW 目前分别受载流子传输和小面积和大面积 APD 中的电阻电容积限制。对于 LiDAR,我们开发了由并联二极管阵列组成的 APD,其直径高达 200 µm,雪崩增益大,M>100,将与专用 CMOS 放大器混合使用。该电路旨在实现光子散粒噪声限制的线性检测,信号动态范围为 6 个数量级,观察时间范围从 ns 到 µs。在单位 APD 增益下进行的首次表征表明,HOLDON 探测器将满足灵敏度和线性动态范围方面的大多数所需性能参数。
在几种温度下加工后,对基于 CdHgTe 的红外探测器的机械行为进行了评估,以确定热机械负荷对残余应力和可靠性的影响。首先,依靠 SEM、X 射线微层析成像和衍射分析,对探测器的结构进行了全面表征,以便了解所有组成层(特别是铟焊料凸块)的性质、形态和晶体取向。结果特别显示了铟凸块的意外单晶外观,具有可重复的截锥形几何形状。为了获得加工后结构在工作温度范围内(从 430 K 到 100 K)的热机械响应,随后开发了一个 3D 有限元模型。正如预期的那样,数值结果显示,从高温到低温,结构中的应力梯度发生了变化,在 100 K 时,CdHgTe 中的局部高应力约为 30 MPa,这主要是由于不同层之间的热膨胀系数不匹配。它们强调了凸块的几何形状和单晶性质以及不同材料的行为规律的重大影响。
带有线性电子色散的材料通常具有高载体迁移率和异常强的非线性光学相互作用。在这项工作中,我们研究了一种此类材料的(THz)非线性动力学HGCDTE,具有电子带分散体的高度依赖于温度和化学计量。我们展示了带隙,载体浓度和带状形状如何共同确定系统的非线性响应。在低温下,齐纳尔隧道的载体产生占主导地位,以减少整体传输的降低。在室温下,quasiballistic电子动力学驱动最大的观察到的非线性光学相互作用,从而导致透射率增加。我们的结果证明了这些非线性光学特性对电子分散和载体浓度的微小变化的敏感性。
2大学。Grenoble Alpes,CNRS,INRAE,IRD,Grenoble INP,IGE,GRENOBLE,法国,法国3沿海系统研究所 - 分析和建模,Helmholtz- Zentrum,以下简历,Geesthacht,Geesthacht,德国,德国4能源与环境计划,气候与环境,气候和环境研究所,国际式系统分析学院,俄勒冈州,俄勒冈州。 6温尼伯曼尼托巴大学环境与地理系地球观察科学中心,15
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
光与物质之间的相互作用允许实现量子固体中平衡状态不平衡状态。特别是,非线性语音是在非平衡中实现固定电子状态的最有效方法之一。在此,通过扩展的从头算分子动力学方法,我们确定长期持久的光驱动的准几何形状可以稳定HGTE化合物材料家族的拓扑性质。我们表明,红外活性声子模式的相干激发会导致原子几何形状的变形,其寿命为几个picseconds。我们表明,在这种非平衡几何形状中,四个Weyl点恰好位于费米水平,使其成为理想的长寿命稳定的Weyl半学。我们建议,可以通过Fermi Arc表面状态的光电子光谱或非线性霍尔效应的超快泵送传输测量值来识别这种亚稳态的拓扑相。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
HG在1911年通过Kamerlingh Onnes测得的零电阻过渡。HG在1911年通过Kamerlingh Onnes测得的零电阻过渡。