简介:Mitragyna Speciosa(Korth。)或kratom包含几种具有潜在thera peutac益处的生物活性化合物。本研究研究了Mitragyna Speciosa Meth Anolic提取物(MSME)在延迟型型小鼠模型中的潜在免疫调节作用。材料和方法:MSME给药后,通过绵羊红细胞(SRBC)诱导雌性BALB/C小鼠。测量了在小鼠的右后脚下的皮下注射SRBC后产生的pAW水肿的厚ness。收集血液样本和脾脏,以研究MSME对抗体产生,完全血细胞计数(CBC),脾脏指数,脾脏增殖和淋巴细胞(CD4,CD8和CD19)种群的影响。结果:数据表明,MSME显着降低了SRBC诱导的PAW水肿,并显示出明显降低抗SRBC抗体水平。然而,在CBC,脾脏指数和CD4,CD8和CD19子集种群中未观察到显着变化。此外,用MSME处理的SRBC诱导的DTH小鼠用脂多糖(LPS)或姜黄素A(CON A)离体降低细胞增殖。结论:这些数据表明,MSME通过抑制DTH反应,减少抗体产生和细胞增殖而潜在地抑制免疫反应,而不会影响淋巴细胞谱。这些发现表明,MSME通过免疫抑制和抗炎活性具有免疫调节作用。马来西亚医学与健康科学杂志(2024)20(SUPP11):34-40。 doi:10.47836/mjmhs20.s11.6马来西亚医学与健康科学杂志(2024)20(SUPP11):34-40。 doi:10.47836/mjmhs20.s11.6
单眼深度估计是计算机视觉中的持续挑战。变压器模型的最新进展与该领域的常规CNN相比表现出显着的优势。但是,这些模型如何优先考虑2D图像中的不同区域以及这些区域如何影响深度估计性能,仍然存在差距。探索转移器和CNN之间的差异,我们采用了稀疏的像素方法来对比分析两者之间的区别。我们的发现表明,尽管变形金刚在全球环境和错综复杂的纹理中表现出色,但它们却落后于保留深度梯度连续性。在单眼深度估计中增强了变压器模型的性能,我们提出了深度差异(DGR)模块,该模块通过高阶分化,特征融合和重新校准来完善深度估计。此外,我们利用最佳运输理论,将深度图视为空间概率分布,并采用最佳运输距离作为损失函数来优化我们的模型。实验结果表明,与插入深度梯度改进(DGR)模块集成的模型以及置换损失函数可增强性能,而无需增加室外Kitti和Indoor Nyu-Depth-v2数据集的复杂性和计算成本。这项研究不仅提供了深入估计变压器和CNN之间区别的新见解,而且还为新颖的深度估计方法铺平了道路。
序号 赞助商/参展商公司名称 展位号 1 参展商 AADICHKRA ABHIKARAN 137 2 参展商 ACCORD SOFTWARE AND SYSTEMS PRIVATE LIMITED 39 3 参展商 ADRYS TECHNOLOGIES 26 4 参展商 ADVANCETECH CONTROLS PVT. LTD. 17 5 参展商 AERO REL SYSTEMS PRIVATE LIMITED 41 6 参展商 AEROMAG ASIA - 7 参展商 AGNIKUL COSMOS PRIVATE LIMITED 85A 8 参展商 AIDIN TECHNOLOGIES PVT LTD 84 9 参展商 AITECH INNOVATIONS INDIA PVT. LTD. 144 10 参展商 AKSHATH AEROSPACE PVT. LTD. (GRAHAA SPACE) 119 11 参展商 AMACE SOLUTIONS PVT LTD 128 12 银牌赞助商 AMADO TOOLS 83 13 黄金赞助商 AMD 28 14 参展商 AMPHENOL INTERCONNECT INDIA PVT LTD 23 15 参展商 AMPHENOL INTERCONNECT INDIA PVT LTD TIMES MICROWAVE DIVISION 49 16 参展商 ANANTH TECHNOLOGIES PRIVATE LIMITED 79 17 参展商 APOGEO SPACE 97B 18 参展商 APOLLO COMPUTING LABORATORIES (P) LIMITED HYDERABAD 108 A 19 钻石赞助商 ASTRA MICROWAVE PRODUCTS LIMITED 132 20 参展商 ASTROGATE LABS PVT LTD 126 21 创新合作伙伴 澳大利亚驻班加罗尔总领事馆 103 22 钻石赞助商 AUTOMATION SYSTEM ENGINEERS PVT LTD 6 23 参展商 AUTOMATON AI INFOSYSTEM PVT. LTD. 124 24 黄金赞助商 AVNET INDIA PVT. LTD. 101 25 参展商 AXON INTERCONNECTORS AND WIRES PVT LTD 66 26 参展商 AZISTA INDUSTRIES PRIVATE LIMITED 80 27 参展商 BALMER LAWRIE & CO LTD 54 28 活动赞助商 BELLATRIX AEROSPACE 88 29 焦点国家 英国高级委员会 101A 30 参展商 CENTRAL TOOL ROOM & TRAINING CENTRE 36 31 钻石赞助商 CENTUM ELECTRONICS LTD 106 32 银牌赞助商 CHAKRADHARA AEROSPACE AND CARGO PRIVATE LIMITED 79B 33 银牌赞助商 CNES 87 34 参展商 CONNEKT ELECTRONICS PVT LTD 68 35银牌赞助商 丹麦总领事馆 - 36 参展商 DATA PATTERNS (INDIA) LIMITED 78 37 银牌赞助商 DHRUVA SPACE PRIVATE LIMITED 130 A 38 参展商 DHV TECHNOLOGY 12:00 AM 39 参展商 DIGANTARA RESEARCH AND TECHNOLOGIES PRIVATE LIMITED 130 40 参展商 DIVYA TECHNOLOGIES 159 41 参展商 DRONESTARK TECHNOLOGIES (OPC) PVT. LTD. 117 42 参展商 DURGA BEARINGS PVT LTD 44 43 参展商 DYNAMIC TECHNOLOGIES 99 44 参展商 EDS TECHNOLOGIES 160 45 参展商 ELENA GEO TECH PRIVATE LIMITED 127 46 参展商 EMBASSY OF ITALY 63 47 黄金赞助商 ENVISYS TECHNOLOGIES PVT LTD 155 48 参展商 ENVITEST LABORATORIES PVT LTD 121 49 参展商 EUROPEAN SPACE AGENCY 97B 50 参展商 EXTEM@IITM 46 51 参展商 GALAXEYE 62 52 参展商 GLAVKOSMOS JSC 10 53 参展商 GLENAIR INTERCONNECT SOLUTIONS 8 54参展商 GODREJ & BOYCE MFG. CO. LTD. 97 55 参展商 HEX20LABS INDIA PRIVATE LIMITED 60 56 参展商 HICAL TECHNOLOGIES PVT LTD 133 57 参展商 HIMSON INDUSTRIAL CERAMIC PVT LTD 114 58 钻石赞助商 HIND HIGH VACUUM COMPANY PVT. LTD 21 59 参展商 HIND INDUSTRIAL MERCANTILE CORP PVT LTD 29 60 参展商 HINDUSTAN AERONAUTICS LIMITED 86 61 参展商 HYSPACE TECHNOLOGIES PVT LTD 122 62 黄金赞助商 ICON ELECTROMATIC PVT 156
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。
抽象目标:事先研究证明了用于确定乳腺肿瘤患者治疗反应的定量超声(QU)的实施。从肿瘤区域定量的几个QU参数与患者的临床和病理反应显着相关。在这项研究中,我们旨在确定是否存在使用乳腺异种移植模型(MDA-MB-231)的超声刺激的微泡(USMB)和高温(HT)引起的QUS参数与肿瘤形态变化之间存在这种联系。方法:用USMB和HT的排列处理严重合并免疫兼具小鼠的后腿生长的肿瘤。使用25 MHz阵列换能器从乳腺肿瘤的小鼠之前和24小时治疗中收集超声射频数据。Result: Our result demonstrated an increase in the QUS parameters the mid-band fi t and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be re fl ective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain.在60分钟的HT持续时间内观察到了QUS光谱参数的显着降低,这可能是由于大多数细胞损失了核的损失,因此使用组织学分析确认。肿瘤内的形态改变可能导致反向散射参数的减少。结论:这里的工作使用QUS技术来评估癌症治疗的效率,并表明超声反向散射的变化反映了组织形态的变化。
印度人类首次踏上火星 2022 - 印度第一艘反重力太空船 Satish Gore 基于 Pushpak Viman Valmiki Ramayana 版权所有仅供 ISRO 使用-***** 只是想象 印度人类首次踏上火星 2022 - 印度首个先进的反重力功能着陆器系统 - Ramayana Pushpak Vision 第三只眼 印度首艘反重力技术航天器 - Pushpak Yan Mangalyan - 所有步骤均 100% 成功。100% 成功的软着陆器系统。顶部的 Pushpak 航天器不会影响任何行星的引力。印度政府要求向火星发送人类 Yan 航天器。速度可以根据需要减慢到尽可能小和尽可能大。只有印度才能首先踏上火星。整个太空都是印度的。恭喜!致总理和印度科学家关于月船二号的信息,印度准备在2020年11月发射月船三号。 印度花卉空间与人类。 人类印度首次踏上火星 2022-第一艘印度反重力太空飞船-由萨蒂什·戈尔先生研究-基于 Pushpak Viman Valmiki Ramaya 第一项印度反重力技术 1)火星飞船-Pushpak Yan 内部总共将有 50 枚火箭。 这将用于加快火箭的速度(减速)。 2)火星软着陆器太空飞船不会受到任何重力影响。 3) 太空飞船的速度可以达到每秒 2 米。 我们可以进一步提高速度并控制它。 4) 我们可以使用 10 D 火箭系统产生和减少反重力。 最多使用 50 枚火箭。 自动模式。使用雷达系统。使用现场直播系统。允许人类正确指挥模式。 5) 我们可以随时控制航天器的速度并改变其方向。6) 使用自动计算机和机器人指挥系统。太空船的大小可按设计确定。7) Satyamev Jayate!Jay Hind!Jay Bharat!基于
2米/秒。 Shree Dudhganga Vedganga Sahakari 糖厂有限公司(SDVSSKL)3 米/秒。绿色动力糖业有限公司(GPSL)4 米/秒。 Jai Hind Sugar Pvt.有限公司(JHSPL)5 米/秒。 Krantiagrani 博士GD Bapu Lad(KDGDBL)6 M/s。拉贾拉姆·巴普·帕蒂尔·萨哈卡里糖厂有限公司(RBSSKL)7 米/秒。萨达希夫拉奥曼德利克卡加尔塔卢卡萨哈卡里糖厂有限公司(SMKTSSKL)8 米/秒。 Shri Datta Sakhar Karkhana(SDSK)9 M/s。 Someshwar Sahakari 糖厂有限公司(SSSKL)10 米/秒。 Urjankur Shree Datta 电力公司有限公司(USDPCL)11 米/秒。 Vithalrao Shinde Sahakari 糖厂有限公司(VSSSKL)12 米/秒。道恩德糖业有限公司(DSL)13 米/秒。 Purna Sahakari 糖厂有限公司(PSSKL)14 米/秒。 Baramati 农业有限公司(平衡)15 米/秒。萨哈卡尔·马哈希·尚卡拉·莫希特·帕蒂尔·萨哈卡里·萨卡尔卡纳有限公司(SMSMPSSKL)16 米/秒。洛克曼加尔糖业乙醇与热电联产工业有限公司(LSECIL)17 米/秒。洛克曼加尔毛利实业有限公司(低强度IL)18米/秒。贾什里拉姆糖业与农产品有限公司(JSAPL)19 米/秒。斯瓦拉杰印度农业有限公司(SIAL)20 米/秒。 Shri Chhatrapati Sahakari 糖厂有限公司(SCSSKL)21 米/秒。萨德古鲁斯里斯里萨卡尔卡纳有限公司(SSSSKL)22 米/秒。 Olam Agro 印度私人有限公司有限公司(OAIPL)23 印度热电联产协会(CAI)
此外,对 LIM K1 与 LIJTF .. 和 TH25 7 结合的叠加共晶结构的分析(参见图 XX)表明,我们采用针对不同 α C-out 和 DF Gout 构象的骨架跳跃策略验证了我们的假设。由先导化合物 GS K48 1 在 RIP K1 中促进的构象和由 TH25 7 在 LIM K1 中促进的构象同样由 LIM K1 中的氧氮杂卓衍生物 LIJTF .. 诱导。在这两种结构中,都观察到 DFG 基序中苯丙氨酸的无表位翻转和 α 螯合物的向外旋转。此外,观察到的区域异构体热稳定性的丧失可以从共晶结构中得到合理解释,其中第二个吡唑氮原子的修饰导致与蛋白质的空间位阻。
Genevieve Marcoux(瑞典隆德大学)AudréeLaroche(加拿大Chu deQuébec)Stephan Hasse(加拿大Chu deQuébec)Marie Bellio(加拿大Chu deQuébec,加拿大)魁北克) Zufferey(Quebec -Quebec-加拿大拉瓦尔大学)TaniaLévesque(加拿大微生物学和免疫学系)Johan Rebetz(瑞典实验室医学)Johan Rebetz(Annie Karakeussian) (加拿大蒙特利尔大学研究中心)Sylvain Bourgoin(加拿大魁北克大学医院中心研究中心)HindHindHindHindHindHindHindhindite Jean Monnet-Universite de Lyon,Fabrice de Lyon,Fabrice Cognasse(Lyon; French of Lyon; French Blass; French Blass; efs)荷兰)约翰·塞姆普尔(瑞典隆德大学)玛丽·乔斯·赫伯特(Marie-JoséeHebert)(加拿大蒙特利尔大学)法国皮雷恩(Paris University Paris是Créteil,Inserm U955加拿大蒙特利尔)Benoit Vingert(法国血液建立)Eric Boilard(Chu de Quebec,加拿大)
太阳喷发是日冕磁场能量的爆炸性释放,表现为太阳耀斑和日冕物质抛射。观测表明,喷发区的核心往往是剪切磁拱,即单一的双极结构,特别是在光球层,相应的磁极性沿强梯度极性反转线(PIL)拉长。什么机制会在单一双极场中触发喷发,以及为什么强PIL的场有利于产生喷发,目前仍不清楚。最近,我们利用高精度模拟,建立了太阳喷发的基本机制,即光球层准静态剪切运动驱动的双极场形成内部电流片,随后快速磁重联触发和驱动喷发。这里我们结合理论分析和数值模拟,研究了不同光球磁通分布即磁图下的基本机制的行为。研究表明,不同磁图的双极场在连续剪切下都表现出类似的演变——从磁能的缓慢储存到快速释放——这符合基本机制并证明了所提出机制的稳健性。此外我们发现具有较强PIL的磁图产生较大的喷发,关键原因是具有较强PIL的剪切双极场可以实现更多的非势能,并且它们的内部电流片可以在较低的高度形成较高的电流密度,从而可以更有效地重联。这也为在具有强PIL的活跃区域中观测到的喷发提供了可行的触发机制。