摘要 尽管希波克拉底文献《心脏论》在 20 和 21 世纪引起了古典学家、医生和医学史学家的极大关注,但目前尚无对这部重要著作的评论。然而,关于许多要点,仍然存在着核心的解释问题:特别是作者如何理解心脏的结构和功能。这部著作对心血管医学史的意义首先在于,与任何其他希波克拉底文献相比,它在心脏内部结构的描述上有了根本性的进步。同时,这部著作与希腊化时期研究的亚历山大研究人员的发现相比存在很大差距——也就是说,这部著作的创作时间可能大致相同。此外,这部作品还首次描述了心脏瓣膜,其中对尖瓣和腱索的详细描述让一些学者认为,这部作品甚至包含了动物心脏系统解剖的证据,或者——当时在埃及亚历山大城以外似乎不可能有——人类心脏解剖的证据。本文旨在通过整合(在某些情况下纠正)先前的解释尝试来对这部作品进行全面评论,以理解这部经常被引用、有时被误解的古代医学论文。
作为一种进化保守的途径,河马信号不仅在胚胎发育中起关键作用,而且还调节癌症的起始和进展。调节河马途径的上游因子是复杂的,包括细胞 - 细胞接触,细胞 - 细胞基质触点,膜受体 - 配体结合和细胞骨架张力。对这些机械或可溶性提示的响应,河马核心激酶被激活或灭活,调节关键转录副因素YAP/TAZ的活性,从而产生生物学后果。在肿瘤的背景下,河马信号传导失调有助于癌症的标志,例如持续增殖,类似干性的特性和转移。重要的是,针对化学物质靶向河马信号正在成为一种有希望的抗癌策略。本文简要介绍了河马途径的发现过程,总结了调节河马途径的上游信号,讨论了河马灭活与癌症发展之间的关系,并突出了针对癌症治疗中靶向HIPPO信号的化学物质的潜在使用。
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
内存预取是一种性能优化技术,广泛应用于现代计算机系统的多个硬件和软件层。预取主动将数据从较慢的内存层带到较快的内存层,以预测其未来的用途。尽管对预取进行了充分研究,但仍在不断探索,尤其是随着新兴的内存层次结构包含异构性 [ 22 ]、分解 [ 27 ]、垂直 / 水平分层 [31] 和内存计算 [48]。早期的预取器针对易于捕获的模式(如步幅),并且足以满足易于理解的应用程序(如 SPEC 中的应用程序)的需求 [ 4 ]。然而,当今的系统和应用程序要复杂得多,动态性更强,简单的方法变得无效。人们对开发能够通过学习内存访问模式而不是检测预编程规则来适应动态执行的预取器的兴趣日益浓厚 [11, 18, 40]。最近的研究已经开始探索深度学习 (DL) 用于预取的可行性 [ 11 , 18 , 30 , 40 ]。理论上,DL 应该可以改善预取,因为它本质上是数据驱动的,并且应该自然地适应应用程序及其环境。事实上,这些研究表明,在理想的模拟中,DL 在准确性方面优于非学习预取方法。然而,所有这些方法都有三个主要缺点,阻碍了它们在现实世界中的应用。
摘要 特发性肺纤维化 (IPF) 包括纤维化肺泡重塑和肺功能逐渐丧失。遗传和实验证据表明,慢性肺泡损伤和呼吸道上皮细胞无法正常修复是 IPF 发病机制的内在因素。肺泡 2 型 (AT2) 干细胞的丢失或突变会损害其自我更新和/或损害其向 AT1 细胞的分化,这些都可能引发肺纤维化。最近的报告表明,IPF 肺中呼吸道上皮细胞的 YAP 活性增加。支气管化区域中 YAP 激活异常的单个 IPF 上皮细胞经常同时表达 AT1、AT2,传导气道选择性标记物甚至间充质或 EMT 标记物,表现出“不确定”的分化状态,并表明异常的 YAP 信号传导可能促进肺纤维化。然而,最近也有研究表明,Yap 和 Taz 对 AT1 细胞维持和肺炎链球菌引起的损伤后的肺泡上皮再生非常重要。为了研究上皮 Yap/Taz 如何促进肺纤维化或驱动肺泡上皮再生,我们灭活了 AT2 干细胞中的 Hippo 通路,导致核 Yap/Taz 增加,并发现这促进了它们的肺泡再生能力,并通过将它们推向 AT1 细胞谱系来减少博来霉素损伤后的肺纤维化。反之亦然,AT2 细胞干细胞中 Yap1 和 Wwtr1(编码 Taz)或 Wwtr1 单独失活会损害肺泡上皮再生,并导致博来霉素损伤后肺纤维化增加。有趣的是,AT2 干细胞中只有 Yap1 失活才会促进肺泡上皮再生并减少肺纤维化。总之,这些数据表明上皮 Yap 促进肺纤维化,而上皮 Taz 减少肺纤维化,这表明针对 Yap 而不是 Taz 介导的转录可能有助于促进 AT1 细胞再生和治疗肺纤维化。
摘要 冯·希佩尔-林道病 (VHL) 是一种罕见的常染色体显性遗传病,其特征是逐渐形成囊肿和肿瘤。幼年特发性关节炎 (JIA) 是一种慢性炎症性疾病,也是儿童中最常见的关节炎。尽管其发病机制尚不完全清楚,但 JIA 被认为是一种多基因自身免疫介导的疾病。遗传或获得性疾病导致免疫失调,可导致肿瘤和自身免疫性疾病,但文献中很少有报道患有 VHL 和伴随自身免疫性疾病的患者病例。本文,我们据我们所知描述了第一例患有 VHL 和炎症性关节炎的儿童病例,并讨论了可能将 VHL 和 JIA 联系起来的三种可能的病理生理机制。了解这两种疾病共同的病理生理学和遗传学可能有助于指导未来的靶向治疗方向,并改善临床结果。
神经科学与医学研究所(INM -7),研究中心Ju lich,Ju ju ju lich,德国B数据科学研究所,武田药品研究所,美国马萨诸塞州剑桥,美国c丹麦磁共振共鸣中心,功能和诊断成像中心神经科学,海因里希海因大学杜斯尔多夫,杜斯尔多夫,德国E射线照相术,哥本哈根大学哥本哈根,丹麦哥本哈根,丹麦神经病学系,哥本哈根大学哥本哈根大学医院医院Bispebjerg和弗雷德里克斯伯格,弗雷德里克斯伯格,医学院哥本哈根,哥本哈根,丹麦h giga-crc in Vivo Imaging,Liege University of Liege,Liege,Belgium
reelin和Dab1信号通路中的功能丧失突变破坏了大脑新皮层和海马中的适当神经元定位,但潜在的分子机制仍然难以捉摸。在这里,我们认为,杂合的Yotari小鼠具有单一的常染色体隐性hotari yotari突变Dab1的Yotari突变比野生型小鼠在产后日(p)7表现出比野生型小鼠的较薄的新皮层小鼠。然而,一项出生的研究表明,这种减少不是由神经元迁移失败引起的。在子宫电穿孔介导的稀疏标记中表明,杂合子Yotari小鼠的浅表层神经元倾向于在第2层中延长其顶端树突。此外,在杂合的Yotari小鼠中,尾部河马校园中的CA1锥体细胞层异常分裂,一项出生的研究表明,这种分裂主要是由于晚期锥体神经元的迁移失败引起的。与腺相关的病毒(AAV)-Medim-ateed稀疏标记进一步表明,分裂细胞中的许多锥体细胞都具有不良的根尖引导。这些结果表明,reelin-Dab1信号通路对神经元迁移和定位的调节具有独特的依赖性对不同大脑区域中DAB1基因剂量的依赖性。
童年时期的抽象社会经济地位(SES)会影响行为和大脑发展。过去的工作一直集中在杏仁核和海马,这是两个对情绪和行为反应至关重要的大脑区域。虽然杏仁核和海马体积存在SES差异,但在该领域与神经生物学特异性有关的该领域有许多未解决的问题,并且这些影响可能更为明显。我们可能能够研究这些大脑区域的一些解剖学细分,以及与SES的关系因参与者的年龄和性别而异。迄今为止尚无工作完成这些类型的分析。为了克服这些局限性,在这里,我们将多个大型的儿童和青少年的神经影像学数据集与有关神经生物学和SES的信息相结合(n = 2,765)。我们检查了杏仁核和海马的细分,发现多个杏仁核细分以及海马的头部与SES有关。在这些领域中,对于高级SES青年参与者而言,这些领域的数量更大。研究年龄和性别特定的亚组,我们倾向于在男孩和女孩中看到年龄较大的参与者的影响。平行样品的平行效应,我们看到了辅助基底杏仁核和海马头的SES和体积之间的显着正相关。我们在男孩中更始终如一地发现海马和海马和杏仁核之间的关联(与女孩相比)。我们讨论了这些结果与“性别变量”的概念以及整个童年和青春期的神经发育的广泛模式。这些结果填补了SES对情绪,记忆和学习至关重要的神经生物学影响的重要空白。
摘要:Hippuric Acid(Ha)是由苯甲酸(BA)肝甘氨酸偶联或苯基丙氨酸的肠道细菌代谢产生的代谢产物。ba通常是通过肠道微生物代谢途径产生的,摄入富含多酚化合物的植物来源的食物,即绿原酸或表沙素。它也可以在食品中存在,无论是自然还是人工添加为防腐剂。血浆和尿液HA水平已用于营养研究中,以估算习惯性水果和蔬菜摄入量,尤其是在儿童和代谢疾病的患者中。ha还被提出为衰老的生物标志物,因为它在血浆和尿液中的水平可能会受到几种与年龄相关的疾病(包括脆弱,肌肉减少症和认知障碍)的影响。具有身体虚弱的受试者通常表现出血浆和HA的尿液水平降低,尽管HA排泄趋于随着衰老而增加。相反,患有慢性肾脏疾病的受试者的HA清除率降低,HA保留可能会对循环,脑和肾脏产生毒性作用。关于年龄较大和多种病的老年患者,解释血浆和尿液中的HA水平可能会特别具有挑战性,因为HA处于饮食,肠道微生物群,肝脏和肾脏功能之间的十字路口。尽管这些考虑因素可能不会使HA成为衰老轨迹的理想生物标志物,但对较旧受试者的新陈代谢和清除的研究可能会提供有价值的信息,以解散饮食,肠道微生物群,脆弱和多种物种之间的复杂相互作用。