结果:考虑到脑半球量后,男性参与者比女性参与者表现出更大的左右HV。海马生长率与性别没有差异。在半球量较大的儿童中,ASD患有ASD的男性和女性参与者的HV比类似半球的TD参与者大。这种效果比仅仅是大脑(大脑相对于身体大小)的较广泛的群体存在。右海马比两组和性别的海马大。右侧的左体积差异对于ASD的差异更大。调整了半球体积后,患有ASD的男性参与者在右海马生长和适应性行为之间显示出显着的正相关。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory ( Buzsáki and Moser, 2013 ; Lisman and Jensen, 2013 ), yet human hippocampal recordings have shown divergent theta corre- lates of memory formation.Herweg等。 (2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。 他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。 我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。 使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。Herweg等。(2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。与计算模型一致,这些计算模型将海马theta在记忆中赋予了基本作用,我们对人类海马记录的大规模研究表明,在成功的记忆编码期间和自发召回先前研究的项目之前,有3 - 4 Hz Theta振荡可靠地增加。
1生物学家研究所,圣约翰国立大学工程师学院。2,,组织学家和外皮学家研究所“博士Mario H. Burgos”,Concower国立大学,Mendoza CP 5500,农场学院的食品食品,巴塞罗那大学,西班牙巴塞罗那08028 *通信:这些作者做出了贡献。
©2022此手稿版本可在CC-BY-NC-ND 4.0许可下提供https:// creativecommons.org/licenses/by-nc-nc-nd/4.0/
摘要 — 本研究提出了一种脉冲神经网络,用于根据神经数据预测运动学,从而实现准确且节能的脑机接口。脑机接口是一种解释神经信号的技术系统,可让运动障碍患者控制假肢。脉冲神经网络具有低功耗和与生物神经结构非常相似的特点,因此有可能改进脑机接口技术。本研究中的 SNN 使用泄漏积分和激发模型来模拟神经元的行为,并使用局部学习方法进行学习,该方法使用替代梯度来学习网络参数。该网络实现了一种新颖的连续时间输出编码方案,允许基于回归的学习。SNN 是在从灵长类动物运动前皮层和大鼠海马记录的神经和运动数据上进行离线训练和测试的。该模型通过寻找预测运动数据与真实运动数据之间的相关性来评估,运动前皮层记录的峰值皮尔逊相关系数达到 0.77,海马体记录的峰值皮尔逊相关系数达到 0.80。该模型的准确性与卡尔曼滤波解码器和 LSTM 网络以及使用反向传播训练的脉冲神经网络进行了对比,以比较局部学习的效果。
摘要 - 在啮齿动物的导航研究中,在海马次区域CA1和下毛(Sub)中都鉴定出空间反应,但这两个大脑区域似乎对空间特征进行了不同的编码。位于子位置细胞的位置比CA1更大且特异性较少。此外,子神经元显示出针对行进标题和轴的更强定向调制。基于记录在“ Triple-T”迷宫上执行导航任务的神经和行为数据,我们提出了一个尖峰的神经网络建模框架,以复制在CA1和SUB中观察到的响应属性。将峰值定时依赖性可塑性和同源缩放(STDP-H)的参数进化,以使两种不同的SNN类似于CA1的录音的响应,当大鼠穿越Triple-t Maze时。我们的结果表明,位置输入在形成CA1位置细胞中可能更具影响力,而Sub似乎同时集成了同类中心位置信息和自我运动提示,以编码“位置类别”。此外,我们的结果预测,这些区域中不同的空间响应可能部分归因于不同的stdp-H学习参数。此处介绍的框架可以用作自动参数调整系统,用于复制其他大脑区域的响应。
摘要动物发育由一组非常小的典型信号通路介导,例如 Wnt、Hedgehog、TGF-β、Notch 和 Hippo 通路。尽管曾被认为仅存在于动物中,但最近的基因组测序揭示了这些通路的组成部分也存在于动物最亲近的单细胞亲属中。这些发现引发了人们对这些发育通路的祖先功能及其在动物多细胞性出现中的潜在作用的疑问。在这里,我们通过开发对 Capsaspora owczarzaki 进行基因操作的技术,首次对单细胞生物中的任何这些发育通路进行了功能性表征,Capsaspora owczarzaki 是动物的近亲,表现出聚集性多细胞性。然后,我们使用这些工具来表征 Hippo 信号核效应物 YAP/TAZ/Yorkie (coYki) 的 Capsaspora 直系同源物,coYki 是动物组织大小的关键调节器。与基于动物研究的预期结果相反,我们发现 coYki 对细胞增殖并非必需,但可以调节细胞骨架动力学和多细胞结构的三维 (3D) 形状。我们进一步证明,单个 coYki 突变细胞的细胞骨架异常是 coYki 突变聚集体异常 3D 形状的基础。总之,这些发现表明 Hippo 通路在细胞骨架动力学和多细胞形态发生中发挥了祖先作用,早于动物多细胞性的起源,在进化过程中被用来调节细胞增殖。
1 费城儿童医院儿科神经内科,宾夕法尼亚州费城 19104,2 宾夕法尼亚大学生物工程系,宾夕法尼亚州费城 19104,3 宾夕法尼亚大学佩雷尔曼医学院神经科学系,宾夕法尼亚州费城 19104,4 宾夕法尼亚大学神经工程与治疗中心,宾夕法尼亚州费城 19104,5 迈克尔·J·克雷森茨退伍军人医疗中心神经创伤、神经变性和修复中心,宾夕法尼亚州费城 19104,6 宾夕法尼亚大学生物化学与分子生物物理学研究生组,宾夕法尼亚州费城 19104,7 宾夕法尼亚大学物理与天文学系,宾夕法尼亚州费城 19104,8 宾夕法尼亚大学佩雷尔曼医学院神经内科,宾夕法尼亚州费城 19104,9 物理医学与宾夕法尼亚大学康复科,宾夕法尼亚州费城 19104