子宫内膜癌是女性生殖道最常见的恶性肿瘤之一,全球范围内的发病率和死亡率呈上升趋势。Hippo通路是人类八种传统癌症信号通路之一,是一个复杂的信号网络,可通过一系列细胞内和细胞外信号调节细胞增殖、分化和迁移,以及限制器官大小。抑制Hippo通路可导致其下游核心成分YAP/TAZ异常激活,从而增强癌细胞的新陈代谢并维持其干性。此外,Hippo通路可以调节肿瘤微环境并诱导耐药性,从而发生肿瘤发生和进展。然而,Hippo通路在子宫内膜癌中的研究很少。本文旨在综述Hippo通路在子宫内膜癌的发病、发展和潜在治疗中的作用,以提供新的治疗靶点。
河马激光器具有许多独特的设计功能,可显着增加激光寿命和正常运行时间。我们的二极管通常是行业平均水平的两倍。河马激光器的模块化设计隔离株已知的磨损组件和关键故障机制将易于在没有昂贵的工具重新调整的情况下易于更改的小型组件(例如二极管,纤维,输出窗口,百叶窗和谐波模块)。这降低了服务库存持有成本,同时缩短平均维修时间(MTTR)。
摘要:化学疗法代表了治疗癌症患者的最有效的策略之一,即使是无法治愈的恶性肿瘤患者,也至少暂时带来了有利的变化。但是,由于耐药性的发展,大多数患者在经过一定的治疗周期后反应较差。对癌症患者管理的药物的抵抗力极大地限制了患者可以实现并继续是严重临床困难的好处。在介导抗癌药物耐药性的机制中,河马信号通路由于其成分的显着致癌活性(例如,YAP和TAZ)及其可药物的特性,引起了越来越多的注意力。本综述将重点介绍当前对河马信号通路如何调节肿瘤细胞中抗癌药物耐药性的理解,以及目前针对hippo途径的药理干预措施,旨在消除恶性细胞并潜在地治疗癌症患者。
摘要:Hippo 信号通路最初于 1995 年在果蝇中发现,它通过抑制增殖和促进细胞凋亡,在器官大小控制和肿瘤抑制中发挥关键作用。大型肿瘤抑制因子 1 和 2 (LATS1/2) 直接磷酸化 Yki 直系同源物 YAP(yes 相关蛋白)及其旁系同源物 TAZ(也称为 WW 结构域转录调节因子 1 [WWTR1]),从而抑制它们的核定位和与转录辅激活因子 TEAD1-4 的配对。许多研究实验室的认真努力已经确定了错误调节的 Hippo 信号在肿瘤发生、上皮间质转化 (EMT)、致癌干细胞以及最近的耐药性发展中的作用。Hippo 信号成分是致癌适应的核心,它促进了许多癌症对靶向治疗药物的耐药性发展,包括 KRAS 和 EGFR 突变体。 2001年,美国食品药品监督管理局(US FDA)首次批准伊马替尼酪氨酸激酶抑制剂,为美国FDA和国家药品监督管理局(NMPA)批准近100种小分子抗癌药物铺平了道路。然而,低反应率和耐药性的发展对改善癌症患者的无进展生存期(PFS)和总生存期(OS)构成了重大障碍。越来越多的证据使科学家和临床医生能够制定针对癌细胞的治疗方法,并通过持续监测肿瘤演变和致癌适应来控制耐药性的发展。在这篇综述中,我们重点介绍了Hippo信号与其他致癌驱动因素相互作用的新兴方面,以及如何将这些信息转化为联合疗法,以针对多种侵袭性肿瘤和耐药性的发展。
-- 数据就像是数字经济之火的氧气,但它同样也可以是消除健康不平等的水。有些人和组织认为数据是火,而 Hippo AI 基金会则专注于将其用作水,以推进造福所有人的 AI 研究,同时保护欧洲的数字主权及其价值观,Hippo AI 基金会创始人 Bart de Witte 补充道。-- 我们与欧洲人工智能研究实验室联合会 CLAIRE 的合作是我们建立这个新生态系统和加速以人为本的 AI 的重要一步。CLAIRE 汇集了所有欧洲 AI 研究实验室的最优秀人才,是网络力量的绝佳典范。我们很自豪能够共同努力,实现欧洲在 AI 研究和创新方面的卓越成就,始终以人为本。
作为一种进化保守的途径,河马信号不仅在胚胎发育中起关键作用,而且还调节癌症的起始和进展。调节河马途径的上游因子是复杂的,包括细胞 - 细胞接触,细胞 - 细胞基质触点,膜受体 - 配体结合和细胞骨架张力。对这些机械或可溶性提示的响应,河马核心激酶被激活或灭活,调节关键转录副因素YAP/TAZ的活性,从而产生生物学后果。在肿瘤的背景下,河马信号传导失调有助于癌症的标志,例如持续增殖,类似干性的特性和转移。重要的是,针对化学物质靶向河马信号正在成为一种有希望的抗癌策略。本文简要介绍了河马途径的发现过程,总结了调节河马途径的上游信号,讨论了河马灭活与癌症发展之间的关系,并突出了针对癌症治疗中靶向HIPPO信号的化学物质的潜在使用。
摘要 特发性肺纤维化 (IPF) 包括纤维化肺泡重塑和肺功能逐渐丧失。遗传和实验证据表明,慢性肺泡损伤和呼吸道上皮细胞无法正常修复是 IPF 发病机制的内在因素。肺泡 2 型 (AT2) 干细胞的丢失或突变会损害其自我更新和/或损害其向 AT1 细胞的分化,这些都可能引发肺纤维化。最近的报告表明,IPF 肺中呼吸道上皮细胞的 YAP 活性增加。支气管化区域中 YAP 激活异常的单个 IPF 上皮细胞经常同时表达 AT1、AT2,传导气道选择性标记物甚至间充质或 EMT 标记物,表现出“不确定”的分化状态,并表明异常的 YAP 信号传导可能促进肺纤维化。然而,最近也有研究表明,Yap 和 Taz 对 AT1 细胞维持和肺炎链球菌引起的损伤后的肺泡上皮再生非常重要。为了研究上皮 Yap/Taz 如何促进肺纤维化或驱动肺泡上皮再生,我们灭活了 AT2 干细胞中的 Hippo 通路,导致核 Yap/Taz 增加,并发现这促进了它们的肺泡再生能力,并通过将它们推向 AT1 细胞谱系来减少博来霉素损伤后的肺纤维化。反之亦然,AT2 细胞干细胞中 Yap1 和 Wwtr1(编码 Taz)或 Wwtr1 单独失活会损害肺泡上皮再生,并导致博来霉素损伤后肺纤维化增加。有趣的是,AT2 干细胞中只有 Yap1 失活才会促进肺泡上皮再生并减少肺纤维化。总之,这些数据表明上皮 Yap 促进肺纤维化,而上皮 Taz 减少肺纤维化,这表明针对 Yap 而不是 Taz 介导的转录可能有助于促进 AT1 细胞再生和治疗肺纤维化。
摘要:通过YAP-TEAD蛋白 - 蛋白质相互作用复合物的破坏,抗癌治疗的新趋势被认识到。yap已被视为河马信号通路的关键调节器。YAP与转录因子TEAD的结合可能会导致疾病进展,因为它驱动细胞增殖并触发抗凋亡信号传导。 最近的研究发现了各种小分子的有希望的活性,用于调节河马信号通路的成分。 通过使用结构阐明和计算方法,一些小分子能够在Yap-tead相互作用界面上结合并抑制河马途径。 这篇评论强调了我们目前对天然和合成分子如何调节河马信号传导活性的理解,并提出了当今可用的植物化学化合物如何靶向YAP-TEAD蛋白质相互作用复合物来消除癌细胞。YAP与转录因子TEAD的结合可能会导致疾病进展,因为它驱动细胞增殖并触发抗凋亡信号传导。最近的研究发现了各种小分子的有希望的活性,用于调节河马信号通路的成分。通过使用结构阐明和计算方法,一些小分子能够在Yap-tead相互作用界面上结合并抑制河马途径。这篇评论强调了我们目前对天然和合成分子如何调节河马信号传导活性的理解,并提出了当今可用的植物化学化合物如何靶向YAP-TEAD蛋白质相互作用复合物来消除癌细胞。
背景:卵巢癌是最常见和最恶性的癌症之一,部分原因是其诊断晚、复发率高。化疗耐药与不良预后有关,并被认为与癌症干细胞 (CSC) 库有关。因此,阐明介导治疗耐药的分子机制对于找到治疗耐药性肿瘤的新靶点至关重要。方法:卵巢癌细胞系中的 MYPT1 shRNA 消耗、miRNA 过表达、RT-qPCR 分析、患者肿瘤样本、细胞系和肿瘤球衍生的异种移植、体外和体内治疗、公共转录组患者数据库和内部患者队列中卵巢肿瘤数据的分析。结果:我们发现编码肌球蛋白磷酸酶靶亚基 1 的 MYPT1 (PPP1R12A) 在卵巢肿瘤中下调,导致生存率降低和肿瘤发生率增加,以及对铂类疗法的耐药性。类似地,靶向 MYPT1 的 miR-30b 过表达会增强卵巢肿瘤细胞的 CSC 样特性,并与 Hippo 通路的激活有关。抑制 Hippo 通路转录辅激活因子 YAP 可在体内和体外抑制由低 MYPT1 表达或 miR-30b 过表达引起的对铂类疗法的耐药性。结论:我们的工作揭示了卵巢肿瘤对化疗的耐药性与 MYPT1 下调后 Hippo 通路靶基因激活导致的 CSC 池增加之间的功能性联系。顺铂和 YAP 抑制剂联合治疗可抑制 MYPT1 诱导的耐药性,表明可在 MYPT1 表达低、可能对铂类疗法产生耐药性的患者中使用这种治疗方法。