作为一种进化保守的途径,河马信号不仅在胚胎发育中起关键作用,而且还调节癌症的起始和进展。调节河马途径的上游因子是复杂的,包括细胞 - 细胞接触,细胞 - 细胞基质触点,膜受体 - 配体结合和细胞骨架张力。对这些机械或可溶性提示的响应,河马核心激酶被激活或灭活,调节关键转录副因素YAP/TAZ的活性,从而产生生物学后果。在肿瘤的背景下,河马信号传导失调有助于癌症的标志,例如持续增殖,类似干性的特性和转移。重要的是,针对化学物质靶向河马信号正在成为一种有希望的抗癌策略。本文简要介绍了河马途径的发现过程,总结了调节河马途径的上游信号,讨论了河马灭活与癌症发展之间的关系,并突出了针对癌症治疗中靶向HIPPO信号的化学物质的潜在使用。
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
内存预取是一种性能优化技术,广泛应用于现代计算机系统的多个硬件和软件层。预取主动将数据从较慢的内存层带到较快的内存层,以预测其未来的用途。尽管对预取进行了充分研究,但仍在不断探索,尤其是随着新兴的内存层次结构包含异构性 [ 22 ]、分解 [ 27 ]、垂直 / 水平分层 [31] 和内存计算 [48]。早期的预取器针对易于捕获的模式(如步幅),并且足以满足易于理解的应用程序(如 SPEC 中的应用程序)的需求 [ 4 ]。然而,当今的系统和应用程序要复杂得多,动态性更强,简单的方法变得无效。人们对开发能够通过学习内存访问模式而不是检测预编程规则来适应动态执行的预取器的兴趣日益浓厚 [11, 18, 40]。最近的研究已经开始探索深度学习 (DL) 用于预取的可行性 [ 11 , 18 , 30 , 40 ]。理论上,DL 应该可以改善预取,因为它本质上是数据驱动的,并且应该自然地适应应用程序及其环境。事实上,这些研究表明,在理想的模拟中,DL 在准确性方面优于非学习预取方法。然而,所有这些方法都有三个主要缺点,阻碍了它们在现实世界中的应用。
摘要 特发性肺纤维化 (IPF) 包括纤维化肺泡重塑和肺功能逐渐丧失。遗传和实验证据表明,慢性肺泡损伤和呼吸道上皮细胞无法正常修复是 IPF 发病机制的内在因素。肺泡 2 型 (AT2) 干细胞的丢失或突变会损害其自我更新和/或损害其向 AT1 细胞的分化,这些都可能引发肺纤维化。最近的报告表明,IPF 肺中呼吸道上皮细胞的 YAP 活性增加。支气管化区域中 YAP 激活异常的单个 IPF 上皮细胞经常同时表达 AT1、AT2,传导气道选择性标记物甚至间充质或 EMT 标记物,表现出“不确定”的分化状态,并表明异常的 YAP 信号传导可能促进肺纤维化。然而,最近也有研究表明,Yap 和 Taz 对 AT1 细胞维持和肺炎链球菌引起的损伤后的肺泡上皮再生非常重要。为了研究上皮 Yap/Taz 如何促进肺纤维化或驱动肺泡上皮再生,我们灭活了 AT2 干细胞中的 Hippo 通路,导致核 Yap/Taz 增加,并发现这促进了它们的肺泡再生能力,并通过将它们推向 AT1 细胞谱系来减少博来霉素损伤后的肺纤维化。反之亦然,AT2 细胞干细胞中 Yap1 和 Wwtr1(编码 Taz)或 Wwtr1 单独失活会损害肺泡上皮再生,并导致博来霉素损伤后肺纤维化增加。有趣的是,AT2 干细胞中只有 Yap1 失活才会促进肺泡上皮再生并减少肺纤维化。总之,这些数据表明上皮 Yap 促进肺纤维化,而上皮 Taz 减少肺纤维化,这表明针对 Yap 而不是 Taz 介导的转录可能有助于促进 AT1 细胞再生和治疗肺纤维化。
神经科学与医学研究所(INM -7),研究中心Ju lich,Ju ju ju lich,德国B数据科学研究所,武田药品研究所,美国马萨诸塞州剑桥,美国c丹麦磁共振共鸣中心,功能和诊断成像中心神经科学,海因里希海因大学杜斯尔多夫,杜斯尔多夫,德国E射线照相术,哥本哈根大学哥本哈根,丹麦哥本哈根,丹麦神经病学系,哥本哈根大学哥本哈根大学医院医院Bispebjerg和弗雷德里克斯伯格,弗雷德里克斯伯格,医学院哥本哈根,哥本哈根,丹麦h giga-crc in Vivo Imaging,Liege University of Liege,Liege,Belgium
reelin和Dab1信号通路中的功能丧失突变破坏了大脑新皮层和海马中的适当神经元定位,但潜在的分子机制仍然难以捉摸。在这里,我们认为,杂合的Yotari小鼠具有单一的常染色体隐性hotari yotari突变Dab1的Yotari突变比野生型小鼠在产后日(p)7表现出比野生型小鼠的较薄的新皮层小鼠。然而,一项出生的研究表明,这种减少不是由神经元迁移失败引起的。在子宫电穿孔介导的稀疏标记中表明,杂合子Yotari小鼠的浅表层神经元倾向于在第2层中延长其顶端树突。此外,在杂合的Yotari小鼠中,尾部河马校园中的CA1锥体细胞层异常分裂,一项出生的研究表明,这种分裂主要是由于晚期锥体神经元的迁移失败引起的。与腺相关的病毒(AAV)-Medim-ateed稀疏标记进一步表明,分裂细胞中的许多锥体细胞都具有不良的根尖引导。这些结果表明,reelin-Dab1信号通路对神经元迁移和定位的调节具有独特的依赖性对不同大脑区域中DAB1基因剂量的依赖性。
童年时期的抽象社会经济地位(SES)会影响行为和大脑发展。过去的工作一直集中在杏仁核和海马,这是两个对情绪和行为反应至关重要的大脑区域。虽然杏仁核和海马体积存在SES差异,但在该领域与神经生物学特异性有关的该领域有许多未解决的问题,并且这些影响可能更为明显。我们可能能够研究这些大脑区域的一些解剖学细分,以及与SES的关系因参与者的年龄和性别而异。迄今为止尚无工作完成这些类型的分析。为了克服这些局限性,在这里,我们将多个大型的儿童和青少年的神经影像学数据集与有关神经生物学和SES的信息相结合(n = 2,765)。我们检查了杏仁核和海马的细分,发现多个杏仁核细分以及海马的头部与SES有关。在这些领域中,对于高级SES青年参与者而言,这些领域的数量更大。研究年龄和性别特定的亚组,我们倾向于在男孩和女孩中看到年龄较大的参与者的影响。平行样品的平行效应,我们看到了辅助基底杏仁核和海马头的SES和体积之间的显着正相关。我们在男孩中更始终如一地发现海马和海马和杏仁核之间的关联(与女孩相比)。我们讨论了这些结果与“性别变量”的概念以及整个童年和青春期的神经发育的广泛模式。这些结果填补了SES对情绪,记忆和学习至关重要的神经生物学影响的重要空白。
结果:考虑到脑半球量后,男性参与者比女性参与者表现出更大的左右HV。海马生长率与性别没有差异。在半球量较大的儿童中,ASD患有ASD的男性和女性参与者的HV比类似半球的TD参与者大。这种效果比仅仅是大脑(大脑相对于身体大小)的较广泛的群体存在。右海马比两组和性别的海马大。右侧的左体积差异对于ASD的差异更大。调整了半球体积后,患有ASD的男性参与者在右海马生长和适应性行为之间显示出显着的正相关。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory ( Buzsáki and Moser, 2013 ; Lisman and Jensen, 2013 ), yet human hippocampal recordings have shown divergent theta corre- lates of memory formation.Herweg等。 (2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。 他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。 我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。 使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。Herweg等。(2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。与计算模型一致,这些计算模型将海马theta在记忆中赋予了基本作用,我们对人类海马记录的大规模研究表明,在成功的记忆编码期间和自发召回先前研究的项目之前,有3 - 4 Hz Theta振荡可靠地增加。