功能磁共振成像(fMRI)是绘制人脑功能的最重要方法之一,但仅对潜在的神经活动进行了间接度量。最近的发现表明,fMRI血液氧合水平依赖性(粗体)信号的神经生理学相关性可能在区域特异性。我们检查了海马和新皮层中fMRI BOLD信号的神经生理学相关性,其中神经结构的差异可能导致各个信号之间的关系不同。用深度电极植入的15例人类神经外科患者(10名雌性,5名男性)进行了无语言召回任务,而电生理活性则同时记录在海马和新皮层部位。同一患者随后在fMRI会议上进行了类似的任务版本。随后的记忆效应(SME)是针对这两种成像模态的计算,作为编码相关的大脑活动的模式,可预测以后的自由回忆。线性混合效应建模表明,大胆和伽马频段中小企业之间的关系通过记录位置的LOBAR位置进行了调节。粗体和高伽玛(70 - 150 Hz)中小型企业在许多新皮层中都具有协变量。这种关系在海马中逆转,在海马中,大胆和高伽玛中小型中小型中小型企业之间存在负相关。我们还观察到内侧颞叶中的大胆和低伽马(30 - 70 Hz)中小型脉冲之间存在负相关关系。这些结果表明,海马中BOLD信号的神经生理学相反与新皮层中观察到的神经生理相反。
中国香港水湾的香港科学技术大学生命科学师; B分子神经科学中心,香港科学技术大学,清水湾,香港,中国; c国家科学技术大学分子神经科学的关键实验室,中国香港清水湾;香港神经退行性疾病中心,中国香港; e香港科学技术大学电子和计算机工程系,中国香港清水湾; F系统生物学与人类健康中心,香港科学技术大学,清水湾,香港,中国; G中国香港中文大学医学院生物医学科学学院,中国香港; H Gerald Choa神经科学中心,香港中国大学,香港,中国香港;我是广东省脑科学,疾病和药物开发的省级主要实验室,深圳研究所,深圳 - 香港脑科学研究所,518057,中国广东,
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
大量针对啮齿类动物和人类的研究表明,海马体和前额叶皮质对于记忆刺激之间的时间关系至关重要,越来越多的证据表明,嗅周皮质也可能参与其中。然而,不同研究的实验参数差异很大,这限制了我们充分理解这些结构的基本作用的能力。事实上,以前的研究在强调的时间记忆类型(例如,顺序、序列或时间分离)、使用的刺激和反应(例如,试验独特或重复的序列,以及偶然或奖励行为)以及控制潜在混杂因素的程度(例如,原发性和近期效应或继发于项目记忆障碍的顺序记忆缺陷)方面各不相同。为了帮助整合这些发现,我们开发了一种新的范式,用于测试试验独特事件系列的偶然记忆,并同时评估海马体、前额叶皮质或嗅周皮质受损动物的顺序和项目记忆。我们发现,这种新方法可以增强对顺序和项目的记忆,而海马、前额叶和周围皮层的损伤会选择性地损害顺序记忆。这些发现表明,海马、前额叶皮质和周围皮层是广泛结构网络的一部分,这些结构对于偶然学习情景记忆中的事件顺序至关重要。
Paul S. Muhle-Karbe,1,2,3,3,10,12, * Hannah Sheahan,1,4,10 Giovanni Pezzulo,5 Hugo J. Spiers,5 Hugo J. Spiers,6 Samson Chien,7 Nicolas W. Schuck,7 Nicolas W. Schuck,7,8,9,9,9,9,11和Christopher Summer summer filld 1,3,3,11,3,3,11, *伯明翰大学心理学,伯明翰B15 2SA,英国3人类脑健康中心,伯明翰大学,伯明翰大学,伯明翰B15 2SA,英国4 Google DeepMind,伦敦EC4A 3TW,英国5认知科学和技术研究所Neurocode,Max Planck人类发展研究所,14195德国柏林8 Max Planck UCL计算精神病学与老化研究中心,14195德国柏林9号,柏林9学院,汉堡大学,20146年,德国汉堡,汉堡,汉堡10.这些作者10.这些作者贡献了11个高级作者12领导人的接触。 (P.S.M.-K。),Christopher.SummerField@psy.ox.ac.uk(C.S.)https://doi.org/10.1016/j.neuron.2023.08.021https://doi.org/10.1016/j.neuron.2023.08.021
与适应性应力相关的行为是多种复杂的精神疾病不可或缺的,并且已经很好地确定血清素能信号介导了这些不良适应状态的各个方面。在这些研究中,我们试图发现先前未定义的血清素能途径的功能,该途径从插入式核(IPN)到腹侧海马(VHIPP)。采用交叉逆行和化学遗传病毒释放策略来操纵IPN-VHIPP途径的功能。我们发现电路抑制对应对策略和自然奖励相关的行为的显着影响。具体而言,除了适度影响蔗糖消耗和食物自我促进外,对IPN-VHIPP途径的抑制大大增加了应力引起的逃生行为。在抑制这种途径时,VHIPP中血清素能5-HT 2A/2C受体的激动剂激活逆转了IPN-VHIPP电路抑制对主动逃生行为的影响,从而支持了行为效应的突触机制。IPN-VHIPP抑制不会引起一般运动,焦虑相关行为和静脉内尼古丁自我给药的差异。重要的是,这些发现与这种逃生行为中对5-羟色胺的规范理解相反,表明5-羟色胺以大脑中特定于途径的方式对行为产生相反的影响。综上所述,这些发现对我们对血清素能信号传导的理解以及相关的疾病症状治疗方法具有重要意义。
图 3. (A) 小鼠 1 海马的细胞类型识别和 tdTomato 报告基因转录水平 (A) 小鼠 1 的带注释的综合 UMAP 投影显示实验和对照条件下存在 12 种不同的细胞类型。簇 0 和簇 12 被识别为阳性对照成纤维细胞刺突。
摘要 — 本研究提出了一种脉冲神经网络,用于根据神经数据预测运动学,从而实现准确且节能的脑机接口。脑机接口是一种解释神经信号的技术系统,可让运动障碍患者控制假肢。脉冲神经网络具有低功耗和与生物神经结构非常相似的特点,因此有可能改进脑机接口技术。本研究中的 SNN 使用泄漏积分和激发模型来模拟神经元的行为,并使用局部学习方法进行学习,该方法使用替代梯度来学习网络参数。该网络实现了一种新颖的连续时间输出编码方案,允许基于回归的学习。SNN 是在从灵长类动物运动前皮层和大鼠海马记录的神经和运动数据上进行离线训练和测试的。该模型通过寻找预测运动数据与真实运动数据之间的相关性来评估,运动前皮层记录的峰值皮尔逊相关系数达到 0.77,海马体记录的峰值皮尔逊相关系数达到 0.80。该模型的准确性与卡尔曼滤波解码器和 LSTM 网络以及使用反向传播训练的脉冲神经网络进行了对比,以比较局部学习的效果。
目的:认知功能在评估个人生活质量方面起着关键作用。本研究旨在调查具有抗氧化和抗炎特性的天然二羧酸壬二酸 (AzA) 如何影响氯化铝 (AlCl 3 ) 引起的大鼠海马行为变化和生化变化。方法:将 32 只雄性 Wistar 大鼠分为四组,分别通过口服管饲法接受蒸馏水、AzA 50 mg/kg、AlCl 3 100 mg/kg 和 AzA 加 AlCl 3 6 周。使用开放式迷宫、高架十字迷宫、新物体识别 (NOR)、被动回避任务和 Morris 水迷宫 (MWM) 测试评估行为变化。此外,还检测了丙二醛 (MDA)、羰基蛋白、肿瘤坏死因子-α (TNF- α )、白细胞介素-1β (IL-1 β )、核因子-κB (NF- κ B)、C/EBP 同源蛋白 (CHOP)、糖原合酶激酶-3β (GSK-3 β )、脑源性神经营养因子 (BDNF) 和乙酰胆碱酯酶 (AChE) 活性。结果:AzA 显著影响 AlCl 3 引起的焦虑样行为和学习记忆障碍。它还降低了 AlCl 3 对 MDA、羰基蛋白、TNF- α 、IL- 1 β 、NF- κ B 和 GSK-3 β 状态的毒性作用;然而,它对 AlCl 3 引起的 CHOP、BDNF 和 AChE 活性变化的有益影响并不显著。结论:这些研究结果表明,AzA 可以改善行为和认知功能,并且几乎可以限制 AlCl 3 引起的氧化应激和神经炎症。
为了构建脑细胞,电路和区域的生物物理详细模型,越来越多地采用数据驱动的方法。这有助于获得一项模拟活动,该活动尽可能忠实地重现实验记录的神经动力学,并将模型转变为基于控制神经细胞性质的原理进行预测的有用框架。在这种情况下,对现有神经模型和数据的访问有助于计算神经科学家的工作,并促进了其新颖性,因为科学界的增长越来越大,神经模型的类型,大小和数量逐渐增加。尽管如此,即使保证可访问性,数据和模型也很少重复使用,因为很难检索,提取和/或了解相关信息,并且通常需要下载和修改单个文件,执行神经数据分析,优化模型参数,并借到自己的资源。虽然着重于构建海马细胞的生物物理和形态准确模型,但我们创建了一个在线资源,即Hippocampus Hub的构建部分 - 一种用于研究海马的科学门户网站,用于研究海马的数据,从不同的在线开放式存储库中收集了来自不同的在线开放式存储库,并允许他们作为单个蜂窝模型构建单个模型构建单个模型的收集。工具和数据的互操作性是我们介绍的工作的关键功能。通过简单的单击和收集程序,例如填写在线商店的购物车,研究人员可以直观地选择感兴趣的文件(即电生理记录,神经形态和模型组件),并开始构建数据驱动的海马神经元模型。这样的工作流程重要的是一个模型优化过程,该过程利用了透明授予用户的高性能计算资源,以及用于运行优化模型的模拟的框架,均通过Ebrains Hodgkin-Huxley神经元建筑商在线工具获得。