方法:通过检测新生大鼠海马神经干中 ki67 的表达和 HT22 细胞中的细胞计数试剂盒 8 (CCK8) 测定来研究细胞增殖。通过 Western blot 检测 caspase 3 和通过末端脱氧核苷酸转移酶 dUTP 缺口末端标记 (TUNEL) 测定神经元和神经胶质细胞的凋亡来评估体内细胞凋亡。通过流式细胞术分析 HT22 细胞中的细胞凋亡。使用 Morris 水迷宫评估大鼠的长期学习和记忆能力。通过酶联免疫吸附试验 (ELISA) 检测炎症因子。通过 Western blot 和定量逆转录聚合酶链反应 (q-RT PCR) 检测 mBDNF/TrkB/PI3K 通路相关蛋白的表达。结果:在新生大鼠海马及HT22细胞中,依达拉奉可促进细胞增殖,减少丙泊酚过量引起的神经毒性作用。此外,依达拉奉预处理可降低促炎因子白细胞介素(IL)-6和肿瘤坏死因子(TNF)-α的水平。丙泊酚组联合应用原肌球蛋白受体激酶B(TrkB)拮抗剂ANA-12和TrkB激动剂7,8DHF,发现依达拉奉可通过成熟脑源性神经营养因子(mBDNF)/TrkB/磷酸肌醇3-激酶(PI3K)通路减轻丙泊酚过量引起的神经毒性。但当前剂量的丙泊酚对大鼠的长期学习记忆无明显影响。结论:依达拉奉预处理通过激活 mBDNF/TrkB/PI3K 通路改善了丙泊酚诱导的增殖抑制、神经细胞凋亡和神经炎症。关键词:依达拉奉、丙泊酚、海马、脑源性神经营养因子、BDNF、酪氨酸激酶受体 B、TrkB、7,8-二羟基黄酮、7,8-DHF、ANA-12
目的:阻塞性睡眠呼吸暂停 (OSA) 会导致低氧血症和睡眠不连续,从而导致神经认知障碍。我们假设 OSA 患者的皮质灰质通常会在与记忆处理和学习相关的区域(特别是海马内)发生局部损失。方法:基于体素的形态测量技术(一种用于磁共振图像的自动处理技术)用于描述七名新诊断为 OSA 的右利手男性患者和七名非呼吸暂停男性对照者的灰质结构变化(这七名对照者的惯用手和年龄匹配)。结果:分析显示,呼吸暂停患者左侧海马内的灰质浓度显著降低(p = 0:004)。右侧海马和其他大脑区域未见进一步显著的局部灰质差异。呼吸暂停患者和对照组之间的总灰质体积没有差异。结论:这份初步报告表明 OSA 患者的大脑形态发生了变化,海马体是认知处理的关键区域。q 2003 Elsevier BV 保留所有权利。
讲座将集中在海马,可以说是在整个寿命中显示出最戏剧性可塑性的大脑结构。本课程的大部分将致力于海马内的神经发生,但还将包括诸如树突状形态的变化,体积变化以及强调性激素,药物,压力,衰老和疾病的重点,可以改变海马的可塑性以及如何与行为相关。我们将讨论神经可塑性对行为以及增强神经塑性和神经发生的治疗应用的影响。有关电子邮件和办公时间的快速笔记:如果您要发送电子邮件至我们中的任何一个,请确保使用UBC电子邮件。讲师/心理UBC电子邮件通常具有过度活跃的垃圾邮件过滤器,因此您的Gmail消息可能会陷入垃圾,从而延迟了我们的回复。
尤其是帕佩兹(Papez)基于这样的想法,即“皮质起源的中心情感过程”提出了特定的作用,然后将其视为在海马形成中建立并被转移到。。。可以将其视为体验情感的接收区域的皮层,这是从下丘脑区域传来的冲动的结果,就像该区域的纹状体被认为是从视网膜上获得的光学兴奋的接收性皮质,来自视网膜''305–6)。我们还将海马视为控制情绪的关键结构。,但我们将对其目标输出结构进行更广泛的看法,并提出了海马及其与扣带回皮层的关系,并在前扣带回皮质的尖锐区分(附录3)方面具有截然不同的功能。
基于静息态血氧水平依赖性信号,对人类海马记忆系统的有效连接进行了测量,以揭示连接的方向性和强度,研究者对参与人类连接组计划的 172 名参与者进行了测量。腹侧“什么”海马流涉及颞叶皮质、周嗅皮质和海马旁 TF 皮质以及内嗅皮质。背侧“哪里”海马流将顶叶皮质与后扣带皮层和扣带后皮质以及海马旁 TH 皮质连接起来,后者又投射到与海马体相连的前下托。第三条流涉及眶额皮质和腹内侧前额皮质,与海马体、内嗅皮质和周嗅皮质具有有效连接。与海马体的前向连接通常比后向连接强。因此,独立的“什么”、“哪里”和“奖励”流可以在海马体中汇聚,然后反向投射从那里返回到源头。然而,与简单的双流海马体模型不同,存在与奖励价值相关的第三条流;在到达海马体之前,这些系统之间存在一些交叉连接;海马体与内嗅皮层和前下托之前的处理阶段具有一些有效的连接。这些发现补充了扩散纤维束成像,并为人类海马体记忆系统运作的新概念奠定了基础。
逐渐耗尽。此外,它还逐渐消耗海马中的热休克转录因子1,从而对成年海马神经发生产生负面影响。此外,不仅Piezo2-Piezo2 Crosstalk在本体感受性的初级传入终端和由于丢失的Piezo2引发的Huygens同步而逐渐逐渐破坏了ALS,但Piezo2-Piezo1 crosstalk在Peripery上也破坏了。Syndecans,尤其是神经系统中的Syndecan-3,是维持此压电串扰的关键参与者。syndecan-3的检测到的电荷改变变体可能会促进压电串扰的损害,以及对运动神经元和海马的基于质子的信号的进行性损失。kCNA2的变体还可以促进