• 用于生产 H2 和转化 CO2 的电解器 • 教育与培训 • 专注于加速材料的发现和开发——正如 Mission Innovation 的清洁能源材料创新挑战中所设想的那样 • GCMAC 在学术界和工业界发起了几项新的 MAP 活动
1. Kuehnast, T.、Kumpitsch, C.、Mohammadzadeh, R.、Weichhart, T.、Moissl-Eichinger, C. 和 Heine, H. 2024.《探索人类古生物组:其与健康和疾病的相关性及其与人类免疫系统的复杂相互作用》,FEBS 杂志。 10.1111/febs.17123 2. Zamyatina, A., Strobl, S., Zucchetta, D., Vasicek, T., Alessandro, M., Ruda, A., Widmalm, G. 和 Heine, H. 2024.《非还原糖支架能够开发具有皮摩尔效力的免疫调节 TLR4 特异性 LPS 模拟物》,Angew Chem Int Ed Engl:e202408421。 10.1002/anie.202408421 3. Heine, H.、Adanitsch, F.、Peternelj, TT、Haegman, M.、Kasper, C.、Ittig, S.、Beyaert, R.、Jerala, R. 和 Zamyatina, A. 2021.《使用二糖脂质 A 模拟物定制调节细胞促炎反应》,Front Immunol,12:631797。10.3389/fimmu.2021.631797 4. Vierbuchen, T.、Stein, K. 和 Heine, H. 2019.《RNA 正在造成损害:RNA 特异性 Toll 样受体对健康和疾病的影响》,Allergy,74:223-35。 10.1111/all.13680 5. Stein, K., Brand, S., Jenckel, A., Sigmund, A., Chen, ZJ, Kirschning, CJ, Kauth, M. 和 Heine, H. 2017.“树突状细胞对乳酸乳球菌 G121 及其 RNA 的内体识别是其抗过敏作用的关键”,《过敏与临床免疫学杂志》,139:667-78 e5。 10.1016/j.jaci.2016.06.018 6. Vierbuchen, T.、Bang, C.、Rosigkeit, H.、Schmitz, RA 和 Heine, H. 2017. “与人类相关的古细菌 Methanosphaera stadtmanae 通过其 RNA 被识别并诱导 TLR8 依赖的 NLRP3 炎症小体激活”,Front Immunol,8:1535。10.3389/fimmu.2017.01535 7. Bang, C.、Weidenbach, K.、Gutsmann, T.、Heine, H. 和 Schmitz, RA 2014. “肠道古细菌 Methanosphaera stadtmanae 和 Methanobrevibacter smithii 激活人类树突状细胞”, PloS one, 9: e99411。10.1371/journal.pone.0099411 8. Debarry, J.、Hanuszkiewicz, A.、Stein, K.、Holst, O. 和 Heine, H. 2010.《鲁氏不动杆菌 F78 的过敏保护特性是由其脂多糖赋予的》,过敏,65:690-7。 10.1111/j.1398-9995.2009.02253.x 9. Debarry, J.、Garn, H.、Hanuszkiewicz, A.、Dickgreber, N.、Blumer, N.、von Mutius, E.、Bufe, A.、Gatermann, S.、Renz, H.、Holst, O. 和 Heine, H. 2007.“从农场牛棚中分离出的鲁氏不动杆菌和乳酸乳球菌菌株具有很强的过敏保护特性”,过敏与临床免疫学杂志,119:1514-21。 10.1016/j.jaci.2007.03.023 10. Heine, H.、Kirschning, CJ、Lien, E.、Monks, BG、Rothe, M. 和 Golenbock, DT 1999.《切割
摘要 — 越来越多的未加固的商用现货嵌入式设备部署在恶劣的操作条件下和高度可靠的系统中。由于影响这些设备的硬件退化的机制,老化检测和监控对于防止严重故障至关重要。在本文中,我们通过实证研究了部署在欧洲 XFEL 粒子加速器中的 298 个自然老化的 FPGA 设备的传播延迟。根据现场测量,我们发现运行设备的开关频率明显慢于未使用的芯片,并且伽马和中子辐射剂量的增加与硬件退化的增加相关。此外,我们证明了开发机器学习模型的可行性,该模型基于历史和环境数据估计设备的开关频率。索引术语 — 嵌入式硬件、硬件退化、FPGA
出生日期和地点 1968 年 1 月 17 日,沃尔芬比特尔 婚姻状况 已婚,有 2 个孩子 军事生涯 2023 年 德国联邦国防军后勤学校校长,加尔施泰特 2020 – 2023 年 德国联邦国防部战略能力发展规划 II 主管,波恩 2018 – 2020 年 德国联邦国防部规划 I 1 主管,波恩 2015 – 2018 年 德国联邦国防军后勤中心物流主管和供应链管理主管,威廉港 2014 – 2015 年 高级军事研究学校高级军事研究项目研讨会负责人,沃斯堡美国堪萨斯州莱文沃思 2013 - 2014 课程参与者 高级战略领导力研究计划,高级军事研究学院,沃斯堡。莱文沃思,堪萨斯州,美国 2012 – 2013 联邦国防部设备、信息技术和使用部(AIN 管理秘书处)负责人私人助理,柏林 2010 – 2012 第 166 维修营指挥官,博斯特 2008 – 2010 北约盟军转型司令部盟军转型最高指挥官副官,弗吉尼亚州诺福克,美国 2005 – 2008 联邦国防部第二 4 参谋部陆军参谋部国际军备合作顾问,波恩 2004 – 2005 课程参与者编号9 国防技术课程(理学硕士),皇家军事科学学院,什里文汉姆,英国 2002 – 2004 规划参谋军官 G3 在科布伦茨陆军司令部接受培训和演习 2000 – 2002 在汉堡联邦国防军指挥参谋学院参加第 43 军总参谋部服务课程 1997 – 2000 维修营 131(KRK)第 2 连连长,巴特弗兰肯豪森 1995 – 1997 讲堂经理 军官候选人在陆军技术学校/陆军技术学院 II 接受培训。检查 1993 – 1995 维修营 3 连排长,施塔特奥尔登多夫 1989 – 1993 在汉堡联邦国防军大学学习机械工程,获得1987 – 1989 年毕业工程师,在维修部队接受军官培训
摘要 本文旨在通过对俄罗斯联邦天体安全政策进行案例研究,为新现实主义在外层空间安全事务方面的有限学术领域做出贡献。近年来,俄罗斯已成为国际外层空间政治的关键参与者之一。然而,俄罗斯发展太空防御资产的同时,在国际组织中发起外交倡议,呼吁避免外空军备竞赛的战略是模糊的。我认为,新现实主义范式通过强调当代外层空间安全事务日益加剧的平衡轨迹阐明了这一案例。首先,从新现实主义对陆地国际政治的学术研究中得出关于国家在外层空间军备和军备控制领域行为的假设。然后针对俄罗斯的太空安全政治案例进行假设检验。有人认为,俄罗斯采用内外平衡的混合策略,并务实地利用国际机构来利用其在外层空间的经济劣势地位,与美国展开以竞争为主的行动。
结果:我们制定了 137 个代码,从中得出了 9 个主题。这些主题包括机遇,例如利用大数据和改进干预措施;采用障碍,例如对 AI 适用性的困惑、容量有限和数据质量差;以及风险,例如偏见的传播、不平等的加剧、炒作和监管不力。结论:专家们对 AI 对公共卫生实践的影响持谨慎乐观的态度,特别是对改善疾病监测的影响。然而,他们认为存在重大障碍,例如缺乏可用的专业知识,以及风险,包括监管不力。因此,对公共卫生实践 AI 的投资和研究可能会带来益处。然而,要实现这些好处,必须增加获取高质量数据的渠道、关于 AI 局限性的研究和教育,以及制定严格的监管规定。
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。