出版版本引文 (APA):Holst, LM、Kronborg, JB、Jepsen, JRM、Christensen, JO、Vejlstrup, NG、Juul, K.、Bjerre, JV、Bilenberg, N. 和 Ravn, HB (2020)。经手术矫正室间隔缺损、大动脉转位和法洛四联症的儿童的注意力缺陷/多动障碍症状。Cardiology in the Young,30(2),180-187。https://doi.org/10.1017/S1047951119003184
乌得勒支大学哥白尼可持续发展研究所。 Princetonlaan 8a, 3584, CB,乌得勒支,荷兰 b 代尔夫特理工大学土木工程与地球科学学院基础设施设计与管理科,Stevinweg 1, 2628 CN,代尔夫特,荷兰 c 锡根大学艺术与人文学院社会科学系,Adolf-Reichwein-Straße 2, 57068,锡根,德国 d ECOLOG 社会生态研究与教育研究所,Wichernstraße 34, 21335,吕讷堡,德国 e 吕讷堡大学,可持续性治理研究所,Universit ¨ atsallee 1, 21335,吕讷堡,德国 f 慕尼黑工业大学巴伐利亚公共政策学院,Richard-Wagner-Straße 1, 80333 Muenchen,德国 g 高级可持续性研究中心, Berliner Str. 130, 14467 Potsdam, 德国 h 柏林工业大学环境经济与环境政策系,Straße des 17. Juni 135, 10623, Berlin, 德国
结果:从怀孕生殖道(污染控制)的外表面培养了87种独特的细菌,并从妊娠组织培养的12种细菌物种。10头牛中有6个(60%)在怀孕子宫内的至少一个位置表现出细菌生长。对于元学结果(16S rRNA基因测序),鉴定出低靶向微生物生物量。对检测到的扩增子序列变体(ASV)的分析表明,有:(1)属在外表面和怀孕子宫内都普遍存在; (2)在外表面上盛行但未检测到的属,或者在怀孕子宫内未被检测到非常低的患病率; (3)未检测到的属或在外表面患病率较低但在怀孕子宫内的患病率相对较高。
背景 . 基因组编辑能够在一代内将有益的序列变异引入具有高遗传价值的动物的基因组中。这可以通过将变异引入原代细胞,然后通过体细胞核移植克隆从这些细胞中产生活体动物来实现。后一步与效率低下和由于供体细胞错误重编程而导致的发育问题有关,从而引起动物福利问题。直接编辑受精的单细胞胚胎可以规避这个问题,并且可能更好地与行业实施的基因改良策略相结合。方法 . 体外受精的合子被注射 TALEN 编辑器和修复模板,以在 PMEL 基因中引入已知的毛色稀释突变。在将经过验证的胚胎转移到受体体内发育至足月之前,通过聚合酶链反应和测序筛选注射胚胎的胚胎活检样本以查找预期的双等位基因编辑。对小牛进行基因分型,并用可见光和高光谱相机扫描其皮毛以评估热能吸收情况。主要结果 . 生产了多头具有精确编辑基因型的非嵌合型小牛,包括来自高遗传价值父母的小牛。与对照组相比,经过编辑的小牛显示出明显的毛色稀释,这与较低的热能吸收率有关。 结论 . 虽然活检筛查并不绝对准确,但可以通过胚胎介导的编辑轻松生产出非嵌合型、精确编辑的小牛。 PMEL 突变导致的较浅的毛色可以降低辐射热增益,这可能有助于减少热应激。 意义 . 该研究验证了推定的致病序列变异,以使放牧牛快速适应不断变化的环境条件。
•2002年加入Novo Nordisk,专注于全球发展,假设糖尿病,肥胖症,血友病和其他严重慢性疾病内Novo Nordisk Portfolio的整体临床发展责任。在2006 - 2008年在美国Novo Nordisk Inc.担任高级医疗总监。
摘要:无角凯尔特(Pc)突变位点是一种遗传学上简单的单突变,是利用基因编辑技术培育无角牛的最佳选择。但Pc位点调控角芽发育的机制尚不明确,因此利用基因编辑、体细胞核移植和胚胎移植的方法获得无角荷斯坦胎牛(妊娠期90天),以纯合Pc插入的胎牛(基因编辑荷斯坦胎牛,EH)和野生型90天荷斯坦胎牛(WH)作为对照。苏木精-伊红(HE)染色结果显示,与WH相比,EH角芽没有白色角化突起或空泡状角质形成细胞,真皮组织下没有粗大的神经束。DNA测序结果显示,Pc位点以纯合方式插入胎牛基因组中。通过转录组测序分析共鉴定出791个差异表达基因。差异表达基因富集分析与蛋白相互作用分析结果显示,Pc插入后存在丰富的基因改变,与粘附分子调控、肌动蛋白表达、细胞骨架变形以及角蛋白表达与角化有关。同时值得注意的是,结果中还包含多个已报道与角性状发育相关的基因,如RXFP2、TWIST1等,本研究首次鉴定出这些改变并进行了总结。研究结果提示,Pc突变位点可能抑制神经嵴细胞EMT生成和角蛋白表达,导致神经嵴细胞不能迁移和角芽组织不能角化,从而调控无角表型的产生。
初乳刺激胃肠道发育。与初乳类似,过渡乳(TM;初乳后的最初几次挤奶)含有较高的营养水平和生物活性成分,而这些成分在代乳品(MR)中是没有的,尽管其含量低于第一批初乳。我们假设,与 MR 相比,在出生后 4 天内给新生犊牛饲喂 TM 将进一步刺激肠道发育。荷斯坦公犊牛在出生后 20 分钟内饲喂 2.8 升初乳,根据出生日期和体重(BW)分配到 11 个区块中的 1 个,在区块内随机分配到 MR(n = 12)或 TM(n = 11)处理组,每天饲喂 3 次。每天挤奶 2 次的奶牛的第 2、3 和 4 次挤奶(TM)产生的牛奶按挤奶次数汇集在一起,每次饲喂 1.89 升;挤奶 2 在第 2 至 5 次喂奶时喂奶,挤奶 3 在第 6 至 8 次喂奶时喂奶,挤奶 4 在第 9 至 12 次喂奶时喂奶。TM 未经巴氏消毒,平均每升含有 17% 的固体、5% 的脂肪、7% 的蛋白质、4% 的乳糖和 20 克 IgG,而 MR(喂食时)含有 15% 的固体、4% 的蛋白质、3% 的脂肪、6% 的碳水化合物,不含 IgG。拒食率相似,因此饲喂 TM 的犊牛每天比饲喂 MR 的犊牛多消耗 1.0 Mcal 代谢能。在第 5 天早上,给犊牛静脉注射每公斤体重 5 毫克溴脱氧尿苷,130 分钟后屠宰;然后切除肠道切片。饲喂 TM 而非 MR 可使所有肠道切片的绒毛长度、绒毛宽度、绒毛与隐窝比率和黏膜长度增加一倍,使近端和中部空肠的黏膜下厚度增加 70%,并有增加十二指肠和回肠黏膜下厚度的趋势。饲喂 TM 时,回肠和中部空肠的黏膜表面积也分别增加了 19% 和 36%。治疗不会改变隐窝深度。与 MR 相比,TM 使所有切片的隐窝上皮细胞和绒毛内的溴脱氧尿苷标记增加了 50%,表明 TM 促进了细胞增殖
US 003224956043 SAWYER PK ALTAJUMP MARIUS PRO UNION EVOLUTION 186 82 57 106 1,8 6,8 1419 1,3 1,5 1,4 78 327 0,2 0,4 -0,5 -0,2
US 003224956043 SAWYER PK ALTAJUMP MARIUS PRO UNION EVOLUTION 186 82 57 106 1,8 6,8 1419 1,3 1,5 1,4 78 327 0,2 0,4 -0,5 -0,2