叶绿体形态在免疫期间发生变化,从而产生了称为stromules的小管状结构。stromules沿着微管延伸,并沿核细胞锚定向肌动蛋白丝,以促进核周chlo-oplast簇。这促进了防御分子/蛋白质从叶绿体到核的运输。缺乏茎在免疫中的直接作用的证据,因为目前,没有已知的基因来调节Stromule生物发生。我们表明,在TNL [TIR(Toll/Interleukin-1 Receptor) - 型链球菌形成所必需的含有驱动蛋白的Calponin同源(CH)结构域(诱导Stromules 1)所需的calponin同源(CH)域(诱导Stromules 1)是必需的。此外,tnl介导的对细菌和病毒病原体的免疫力是必需的。基斯1的微管结合运动结构域是基质形成所必需的,而肌动蛋白结合,CH结构域是核叶叶绿体簇需要的。我们表明,KIS1通过早期的免疫信号成分EDS1和PAD4与水杨酸 - 需要Kis1的stromules发挥作用。因此,KIS1代表stromule生物发生的玩家。
准确修复DNA双链断裂(DSB)对于基因组稳定性至关重要,并且有缺陷的修复是癌症等疾病的基础。同源重组使用完整的同源序列来忠实地恢复受损受损的DNA,但是损坏的DNA终止如何在包含数十亿个非同源碱基的基因组中找到同源位点,尚不清楚。在这里,我们介绍了姐妹孔C,这是一种高分辨率方法,用于绘制复制染色体中的分子内和转运相互作用。我们通过募集两个功能上不同的粘蛋白池来证明DSBS重塑染色体体系结构。环形成粘着蛋白积聚在巨型尺度范围内,以控制围绕破裂位点的拓扑关联结构域(TAD)内的同源性采样,而粘性粘着蛋白将浓缩的位点浓缩到蛋白质染色剂的链球末端。这种双重机制限制了同源性搜索空间,突出了染色体构象如何有助于保持基因组完整性。
肿瘤形状是影响肿瘤生长和转移的关键因素。本文提出了一种通过持久同源性计算的拓扑特征来表征数字病理学和放射学图像中的肿瘤进展,并研究了其对事件发生时间数据的影响。所提出的拓扑特征对于尺度保持变换不变,可以总结各种肿瘤形状模式。拓扑特征在功能空间中表示,并用作功能Cox比例风险模型中的功能预测因子。所提出的模型可以对拓扑形状特征与生存风险之间的关联进行可解释的推断。对连续的133名肺癌患者和77名脑瘤患者进行了两项案例研究。两项研究的结果表明,拓扑特征在调整临床变量后可以预测生存预后,预测的高风险组的生存结果比低风险组更差。此外,发现与生存风险呈正相关的拓扑形状特征是不规则和异质的形状模式,已知它们与肿瘤进展有关。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年5月11日。; https://doi.org/10.1101/2023.06.17.545412 doi:biorxiv preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年2月12日。 https://doi.org/10.1101/2023.07.26.550718 doi:biorxiv Preprint
摘要 之前,我们描述了大量果蝇菌株,每个菌株都携带一个人工外显子,其中包含一个基于 CRISPR 介导的同源重组插入目标基因内含子中的 T2AGAL4 盒。这些等位基因可用于多种应用,并且已被证明非常有用。最初,基于同源重组的供体构建体具有较长的同源臂(>500 bps),以促进大型构建体(>5 kb)的精确整合。最近,我们表明,供体构建体的体内线性化使得能够使用短同源臂(100-200 bps)将大型人工外显子插入内含子中。较短的同源臂使得商业合成同源供体成为可能,并最大限度地减少了供体构建体生成的克隆步骤。不幸的是,大约 58% 的果蝇基因缺乏适合所有注释异构体中人工外显子的编码内含子整合。在这里,我们报告了新构建体的开发,这些构建体允许用 KozakGAL4 盒替换缺乏合适内含子的基因的编码区,从而产生与目标基因类似地表达 GAL4 的敲除/敲入等位基因。我们还开发了定制载体骨架,以进一步促进和改善转基因。在包含目标基因 sgRNA 的定制质粒骨架中合成同源供体构建体,无需注射单独的 sgRNA 质粒,并显著提高了转基因效率。这些升级将使几乎所有果蝇基因都能靶向,无论外显子-内含子结构如何,成功率为 70-80%。
X连接的淋巴细胞增生性疾病是一种罕见的遗传免疫疾病,是由SH2D1A基因中的突变或缺失引起的,它编码了细胞内适配器蛋白SAP(SLAM相关蛋白)。SAP对于介导多种关键免疫过程至关重要,并且在缺失的情况下,免疫系统(尤其是T细胞)失调。患者出现了各种临床表现,包括淋巴淋巴细胞增多症(HLH),肿瘤性肿瘤性血症,淋巴瘤和自身免疫性。治疗选择是有限的,患者很少能够在成年中生存,而没有同种异体造血干细胞移植(HSCT)。但是,此过程在不匹配的供体设置中或在有活跃的HLH的情况下会产生较差的结果,从而剩下未满足的临床需求。自体造血干细胞或T细胞疗法可以提供替代的治疗选择,从而消除了为HSCT找到合适的供体的需求,并具有出现同质性的任何风险。SAP具有严格控制的表达方式,即常规的慢病毒基因输送平台可能无法完全复制。一种基因编辑方法可以保留更多控制SAP表达的内源性调节元素,并可能提供更佳的治疗。在这里,我们评估了使用Adeno相关的Serotype 6(AAV6)基于供体模板的adeno相关病毒血清型6(AAV6)的载体,可以在SH2D1A基因座的第一个外显子上推动SAP cDNA的靶向插入SH2D1A基因座的第一个外显子的能力。所有核酸酶平台均能够具有高效率基因编辑,并使用无血清AAV6转导方案进行了优化。我们表明,通过基因编辑工具纠正的XLP患者的T细胞恢复了SAP基因表达的生理水平并恢复了SAP依赖性免疫功能,这表明XLP患者具有新的治疗机会。
culex quinquefasciatus说是在世界的热带和亚热带地区分布的蚊子。这是一种夜间活性的,机会性的血液源,媒介是许多动物和人类疾病,包括西尼罗河病毒和禽类疟疾。当前向量控制方法(例如物理/化学)越来越无效;杀虫剂的使用还对人类和生态系统健康构成危害。基因组编辑的进步允许开发遗传昆虫控制方法,这些方法是特异性物种特异性的,从理论上讲,非常有效。crispr/cas9是一种细菌衍生的可编程基因编辑工具,可在一系列物种中起作用。我们描述了Quinquefasciatus中同源性修复的第一个成功的种系基因基因概括。使用CRISPR/CAS9,我们将编码荧光蛋白荧光团(HR5/IE1 -DSRED,CQ7SK -SGRNA)编码的SGRNA表达盒和标记基因集成到kynurenine 3 − 3-单核酶(KMO)基因中。我们达到的最小转化率为2.8%,类似于其他蚊子物种的速率。确定了预期基因座的精确敲门in。插入纯合子在早期幼虫中表现出白眼表型,并且通过化合物表现出隐性致命表型。这项工作为工程C. Quinquefasciatus提供了一种有效的方法,为该向量开发遗传控制工具提供了一种新工具。
临床证据表明,认知障碍与脑血管功能障碍和脑血流减少有关。因此,从功能上理解大脑功能和血管网络之间的联系至关重要。然而,系统地定量描述和比较像脑血管这样复杂结构的方法还很缺乏。多光子显微镜等 3D 成像模式使研究人员能够以高空间分辨率捕获脑血管网络。尽管如此,图像处理和推理是涉及成像的生物医学研究的一些瓶颈,该领域的任何进步都会影响许多研究小组。在这里,我们提出了一种基于持久同源性的拓扑编码卷积神经网络来分割脑血管的 3D 多光子图像。我们证明我们的模型在 Dice 系数方面优于最先进的模型,并且在灵敏度等其他指标方面也具有可比性。此外,我们模型的分割结果的拓扑特征模仿了人工基本事实。我们的代码和模型在 https://github.com/mhaft/DeepVess 上开源。
致力于通过细胞和基因疗法改变生命的目标 2022 年,Oxford Biomedica 在建立病毒载体开发和供应的全球领导地位方面取得了重大进展。我们扩大了病毒载体 CDMO 产品范围,并将业务扩展到美国和新的病毒载体类型,以巩固我们在慢病毒载体方面公认的专业知识。我们与 Homology Medicines, Inc. (Homology Medicines) 达成的转型交易使我们能够利用我们在开发和生产基于腺病毒的 Oxford AstraZeneca COVID-19 疫苗方面的成功工作,并通过我们的第一个美国业务 Oxford Biomedica Solutions 立即将我们带入快速增长的 AAV 市场。通过此举,我们扩展了创新开发和制造专业知识,使更多生物技术和制药客户能够为患者提供挽救生命的疗法。