受监控的量子电路可以实现前所未有的多体纠缠动态控制。在这里,我们展示了随机的、仅测量的电路,实现了 Kitaev 蜂窝模型的键和斑块耦合的竞争,产生了具有次级 L ln L 液体缩放行为的结构化体积定律纠缠相。这种相互作用的马约拉纳液体在改变相对耦合概率时获得的纠缠相图中占据高度对称的球形参数空间。球体本身是一个临界边界,量子 Lifshitz 缩放将体积定律相与近似面积定律相、颜色代码或环面代码区分开来。一个例外是一组三临界自对偶点,它们表现出有效的 (1 + 1)d 共形缩放,体积定律相和两个面积定律相在此相交。从量子信息的角度来看,我们的结果定义了在存在投影误差和随机综合征测量的情况下颜色代码的误差阈值。
超导状态通常有利于类似于铁磁性的均匀空间分布。然而,配对 - 波状态在配对顺序中表现出符号变化,从而导致相干性的潜在挫败感。,我们提出了一种机械性,该机构是源于配对波状态相干性的挫败感,其空间调制表现出涡旋 - 抗逆转录了蜂窝状晶格。经典的基态配置映射到百特的三色模型,揭示了宏观的退化,并伴随着广泛的熵。相一致性问题交织了U(1)阶段和涡度变量。虽然所得的颜色和相位闪光抑制了配对密度波顺序,但它们在超导过渡温度(T C)上方维持了六重序。1/3裂片涡流作为六重方顺序中的基本拓扑缺陷出现。这种沮丧的超导性的新型机制为CSV 3 SB 5中观察到的分数振荡提供了另一种解释。
采用先进激光剪切干涉技术进行航空航天无损检测 John W. NEWMAN Laser Technology Inc. 1055 W. Germantown Pike, Norristown, PA 19403 电话:610-631-5043,传真:610-631-0934 电子邮件:jnewman@laserndt.com 网址:www.laserndt.com 摘要:自 1986 年首次用于美国生产飞机项目以来,剪切干涉无损检测已经取得了长足的发展。剪切干涉激光干涉成像方法测量由于施加的应力工程变化而导致的测试结构变形。由此产生的 Z 轴应变分量变化揭示了航空航天结构中脱粘、分层、核心缺陷和冲击损伤等亚表面缺陷的图像。剪切干涉无损检测提供高吞吐量、经济高效的生产力增强、改进的制造工艺和质量。数字 CCD 相机、PC 和小型高功率固态激光器的发展已显著提高了剪切干涉仪和系统的性能。剪切干涉仪目前广泛用于各种飞机,包括 F-22、F-35 JSF、空中客车、赛斯纳 Citation X、雷神 Premier I 和 NASA 航天飞机。本演讲将简要介绍剪切干涉无损检测技术的背景以及生产和便携式机载剪切干涉检测技术和应用的最新发展。关键词:航空航天无损检测、剪切干涉无损检测、蜂窝结构、无损检测、脱粘、损坏、分层 1.0 背景 在当今竞争激烈的航空航天环境中,一种高效的高速检测技术至关重要。剪切干涉无损检测为在制造和现场对新飞机进行无损检测提供了一种更好、更快的方法。为了最大限度地提高燃油经济性和性能,工程师们已经从铆接和粘合的铝结构转向实心复合层压板、带有蜂窝或泡沫芯的复合夹层板以及胶带缠绕的复合结构(如机身)。传统的无损检测方法,例如超声波 (UT) C 扫描,可能无法为这些新材料和几何形状提供最佳的缺陷检测能力,并且速度很慢,典型的吞吐量仅为 10 平方英尺/小时。此外,制造复杂复合结构的过程需要一种快速检查的方法来提供过程控制反馈,并以尽可能低的成本确保质量和可靠性。在当今的许多航空航天项目中,激光剪切干涉技术提供了很大一部分解决方案。
进行了一项分析研究,以确定 2.7 马赫箭翼超音速巡航飞机主机翼和机身结构设计的最佳结构方法。考虑近期开始设计来评估概念。重点放在热应力、静态气动弹性、颤振、疲劳和故障安全设计、静态和动态载荷之间的复杂相互作用,以及结构布置、概念和材料变化对这些相互作用的影响。结果表明,采用钛合金 6A1-4V 的低轮廓凸珠和蜂窝夹层表面板的混合机翼结构效率最高。下部结构包括用硼-聚酰亚胺复合材料加固的钛合金翼梁帽。机身外壳由 6 ~ - 4 v 钛合金帽形加固蒙皮和框架结构组成。本报告总结了研究成果,并讨论了超音速巡航飞机设计的整体研究逻辑、设计理念和分析方法之间的相互作用。
图2。a)顶部:在7天内3D打印网格模式内WT S. elongatus的生长。底部:5天大的水凝胶的图像,这些水凝胶包含印刷在磁盘,蜂窝和GRID_A几何形状上的WT细胞的图像。补充表S1中描述了这些不同模式的维度细节。b)未载水凝胶(I&II)的FESEM图像,以及含有WT链球菌细胞(III&IV)的水凝胶。S。Elongatus细胞以假绿色突出显示。c)叶绿素自动荧光的共聚焦显微镜图像和含有WT链球菌细胞的水凝胶的Sytox蓝色染色以及生长的0、5和7天。d)在卸载水凝胶的80μmol光子M -2 s -1的入射辐照度中的净光合作用的盒子图,用于固定的水凝胶和抗生素抗生素链球菌菌株[WT(SP r sm r gm r gm r)]。
新机使用时间 1564 小时 1564 小时 TBO 3600 小时 3600 小时 道具:(4 叶片 McCauley)新机使用时间 1564 小时 1564 小时 大修使用时间 312 小时 312 小时 外观:整体马特洪峰白色,带城堡银色和黄昏灰色条纹。2010 年。内饰:四个俱乐部座椅,配有安全带便盆,采用 Mammut Bone 皮革制成,机组座椅配有 Aerolamb Camel 羊皮嵌件,Honeycomb II Quarry 地毯,下部侧板采用 Mannut Bone 皮革,装饰条和扶手采用 Eurosoft Charcoal,车顶内衬采用 Ultraleather Milkweed,窗户面板采用 Buffalino 3015 Surfside,窗帘隔断采用 Line Basket Black Pearl。 2010. 航空电子设备: 配备 GAD43E(ADF/DME)和合成视觉的 Garmin G600 PFD Garmin GTN 750 触摸屏 GPS Garmin GNS 530 GPS 导航/通信 TAWS Garmin GDL88 ADS-B 输出 Garmin TAS800 交通系统 Garmin GMA-340 音频面板 升级版 Blackhawk 数字扭矩表 Shadin 数字燃油流量计 Garmin GTX33 E/S 和 GTX330 ES 应答器 ADS-B 输入 GDL69 XM WX 和娱乐 ARC 1000A 自动驾驶仪 Collins WXR-200A 彩色雷达 BF Goodrich WX-1000E Stormscope 选项: 速度堆栈 406 ELT 工厂空调 新型飞行员侧电动挡风玻璃
本研究探索了新开发的结构集成表面铰接 (SISA) 系统在各种结构工程应用(如建筑外墙和太阳能电池板)中的效率。SISA 是一个模块化系统,由动态可调的三维表面面板组成,由内部线框空间结构支撑。铰接技术因面板的具体功能而异,其配置旨在通过外表面面板和内部框架之间的复合作用来优化结构性能。结合多面体和蜂窝状配置(包括四面体和凸多边形形式),对塑料、智能玻璃和金属板等材料进行了评估。该研究强调通过将现代框架系统与表面铰接相结合来提高大规模结构效率。它还探讨了建筑设计的演变,并介绍了使用基于 SISA 的结构的案例研究,以强调结构完整性的潜在改进。通过解决材料特性和设计技术,该研究旨在展示 SISA 系统如何为建筑工程带来重大进步。
高质量的复合材料在太空应用中已经使用了几十年,主要用于载人航天器、卫星结构和航天运载火箭。它们在运载火箭中有着广泛的应用,例如固体火箭发动机和燃料和气体压力容器。许多复合材料用作重返大气层的车辆的热保护系统。碳纤维复合材料通常用于卫星结构及其有效载荷系统。1 卫星的总线结构由铝蜂窝芯和复合材料蒙皮制成。其他需要尺寸稳定性的结构由增强复合材料制成。图 1 描述了复合材料在先进空间结构中的应用示例,以及如何确定它们在受到超高速碎片影响时的性能。这些复合材料有助于在太空极端温度下保持极端尺寸稳定性。2 对更大复合结构的需求促使开发高质量的复合结构,这些结构可以用更少的接头制造这些组件,从而增加使用复合结构的好处。3
描述:RRDAS-L 的主要任务是支持空降全球反应部队 (GRF)、空降旅战斗队 (BCT) 的空投需求以及非空降 BCT、斯特赖克旅战斗队 (SBCT)、特种作战部队 (SOF) 和其他未来部队的补给,以执行战略、战役和战术军事行动。RRDAS-L 将用于非许可威胁环境中,这种环境中需要改变高度或提高飞机速度以减少飞机暴露时间,将作战装备和其他物资空投到 DZ。动态不对称威胁和作战环境要求一支全方位、战略响应迅速、敏捷且占主导地位的陆军部队,在需要时可以通过空投插入并维持总重量。RRDAS-L 物资解决方案将在空投行动中为重达 22,000 磅的滚动车辆提供滚装和滚卸能力。目标是将索具安装时间减少至少百分之二十五,将拆除索具的时间减少百分之四十,并将对能量耗散材料(蜂窝)的依赖减少百分之八十。
