Kai Xiong, 1 Karen Julie la Cour Karottki, 1 Hooman Hefzi, 2,5 Songyuan Li, 1 Lise Marie Grav, 1 Shangzhong Li, 2,6 Philipp Spahn, 2,5 Jae Seong Lee, 3 Ildze Ventina, 1 Gyun Min Lee, 1,4 Nathan E. Lewis, 2,5,6 Helene Faustrup Kildegaard, 1 和 Lasse Ebdrup Pedersen 1,7,8,* 1 丹麦技术大学诺和诺德基金会生物可持续性中心,丹麦灵比 2 加州大学圣地亚哥分校诺和诺德基金会生物可持续性中心,美国加利福尼亚州拉霍亚 3 亚洲大学分子科学与技术系,韩国水原 16499 4 韩国科学技术研究院生物科学系,大田 5加州大学圣地亚哥分校儿科,美国加利福尼亚州拉霍亚 6 加州大学圣地亚哥分校生物工程系,美国加利福尼亚州拉霍亚 7 丹麦技术大学生物工程系,丹麦林比 8 主要联系人 *通信地址:laeb@dtu.dk https://doi.org/10.1016/j.crmeth.2021.100062
通信:Nathan E Lewis,nlewisres@ucsd.edu。作者声明Karen Julie La Cour Karottki:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Hooman Hefzi:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Songyuan Li:调查,写作 - 评论和编辑; Lasse Ebdrup Pedersen:正式分析,监督,写作 - 原始草稿,写作 - 评论和编辑; Philipp N. Spahn:资源,软件; Chintan Joshi:正式分析,写作 - 原始草稿; David Ruckerbauer:资源,写作 - 评论和编辑; Juan A. Hernandez Bort:资源,写作 - 评论和编辑;亚历克斯·托马斯(Alex Thomas):数据策划; Jae Seong Lee:调查,监督,写作 - 原始草稿,写作 - 评论和编辑;妮可·博斯(Nicole Borth):资源,写作 - 评论和编辑; Gyun Min Lee:监督,写作 - 评论和编辑; Helene Faustrup Kildegaard:概念化,项目管理,资金获取,监督,写作 - 评论和编辑;内森·刘易斯(Nathan E.
6 Light and Matter 8 9 Hooman Barati Sedeh 1 , Danilo G. Pires 1 , Nitish Chandra 1 , Jiannan Gao 1 , Dmitrii Tsvetkov, 1 Pavel 10 Terekhov 1 , Ivan Kravchenko 2 , Natalia Litchinitser 1, * 11 12 1 Department of Electrical and Computer Engineering, Duke University, 27708 Durham, NC,美国。13 2纳米相材料科学中心,橡树岭国家实验室,37831 Oak Ridge,美国田纳西州。15 * Corresponding author: natalia.litchinitser@duke.edu 16 17 Keywords: mie resonances, structured light, multipole decomposition, high-index nanoparticle 18 19 Abstract 20 21 Structured lights, including beams carrying spin and orbital angular momenta, radially and 22 23 azimuthally polarized vector beams, as well as spatio-temporal optical vortices, have 24 attracted significant由于其独特的振幅,相位前,极化和25 26的时间结构引起的兴趣,从而在光学和量子中实现了各种应用27 28通信,微观渗透和超分辨率成像。在平行的结构化29个光学材料,超材料和元面孔中,由工程单元组成 - 31个元原子,开辟了新的途径,用于操纵光的流动和光学感测。32 33虽然几项研究探索了对单个元原子的结构化光作用,但它们的34个形状在很大程度上仅限于简单的球形几何形状。但是,
f ront m保持火星与纳米颗粒保持温暖的可行性:与纳米颗粒加热火星的可行性作者Samaneh Ansari 1,Edwin S. Kite S. Kite 2,*,Ramses Ramses Ramirez 3,Liam J. Steele J. Steele 2,4,Hoomani Mohseni 1。西北大学电气和计算机工程系;伊利诺伊州埃文斯顿。2。芝加哥大学地球物理科学系;伊利诺伊州芝加哥。 3。 中央佛罗里达大学物理系;佛罗里达州奥兰多。 4。 欧洲中等天气预报中心;英国雷丁。 *通讯作者,kite@uchicago.edu摘要摘要火星表面的三分之一已经浅了h 2 o,但目前太冷了,无法生存。 使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。 但是,我们在这里表明,由火星易于获得的材料制成的人造气溶胶(例如,长约9μm的导电纳米棒)可以使火星> 5×10 3倍3倍3倍的火星比最佳气体高> 5×10 3倍。 这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。 类似于火星的自然灰尘,它们被高高地扫入火星的气氛中,从而使近地面传递。 在10年的粒子寿命中,两个气候模型表明,在30升/秒的持续释放将在全球范围内升高30 K,并开始融化冰。 因此,如果可以按(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎不如先前想象的那么高。芝加哥大学地球物理科学系;伊利诺伊州芝加哥。3。中央佛罗里达大学物理系;佛罗里达州奥兰多。4。欧洲中等天气预报中心;英国雷丁。*通讯作者,kite@uchicago.edu摘要摘要火星表面的三分之一已经浅了h 2 o,但目前太冷了,无法生存。使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。但是,我们在这里表明,由火星易于获得的材料制成的人造气溶胶(例如,长约9μm的导电纳米棒)可以使火星> 5×10 3倍3倍3倍的火星比最佳气体高> 5×10 3倍。这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。类似于火星的自然灰尘,它们被高高地扫入火星的气氛中,从而使近地面传递。在10年的粒子寿命中,两个气候模型表明,在30升/秒的持续释放将在全球范围内升高30 K,并开始融化冰。因此,如果可以按(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎不如先前想象的那么高。带有人造气溶胶的预告变暖火星似乎是可行的。主文本简介。干燥的河谷越过火星曾经可持续的表面(1,2),但今天冰冷的土壤太冷了,无法获得地球衍生的寿命(3-5)。流可能到600 kyr(6),这暗示着一个行星在可居住性的风口浪尖上。通过关闭围绕波长(λ)22 µm和10 µm的频谱窗口,已经提出了许多方法来加热火星表面,通过该窗口,通过热红外辐射上升到空间(7-9),表面通过热红外辐射冷却。Modern Mars具有薄(〜6 MBAR)的CO 2大气,在15 µM带中仅提供约5 K温室的温暖(10),而火星显然缺乏足够的冷凝或矿化CO 2来恢复温暖的气候(11)。可以使用人工温室气体关闭光谱窗口(例如
科学委员会 Sergey Alekseenko,库塔特拉泽研究所俄罗斯热物理学系 Derek Baker,土耳其中东技术大学 Ryszard Białecki,波兰西里西亚理工大学 Camilo Bulnes,墨西哥国立自治大学 Bassam Dally,沙特阿拉伯阿卜杜拉国王科技大学 Kyle Daun,加拿大滑铁卢大学 Pradip Dutta,印度科学研究所 Pedro Coelho,葡萄牙里斯本高等技术学院 Renata Cotta,巴西里约热内卢联邦大学 Michael Epstein,以色列特拉维夫大学 Timothy Fisher,美国加州大学洛杉矶分校 Francis Franca,巴西南里奥格兰德联邦大学 Iskender Gökalp,土耳其技术与创新委员会 Kamel Hooman,荷兰代尔夫特理工大学 John R. Howell,美国德克萨斯大学奥斯汀分校 Nikolay Ivanov,俄罗斯圣彼得堡理工大学 James Klausner,美国密歇根州立大学Atsuki Komiya,日本东北大学 Wojciech Lipiński,塞浦路斯研究所,塞浦路斯 Fengshan Liu,加拿大国家研究委员会,加拿大 Peter Loutzenhiser,美国佐治亚理工学院 Christos Markides,英国伦敦帝国理工学院 M. Pinar Mengüç,土耳其厄齐因大学 Michael F. Modest,美国加州大学默塞德分校 Tuba Okutucu-Özyurt,土耳其国际电信联盟能源研究所 Mike Owen,南非斯泰伦博斯大学 Nesrin Özalp,美国伊利诺伊州立大学 Jaona Randrianalisoa,法国兰斯大学 Martin Roeb,德国航空航天中心,德国 Gary Rosengarten,澳大利亚皇家墨尔本理工大学 帅勇,哈尔滨工业大学,中国 Terrence Simon,美国明尼苏达大学 Janusz Szmyd,波兰克拉科夫 AGH 大学 陶文泉,西安交通大学,中国 Felipe托雷斯,澳大利亚国立大学,澳大利亚 王志华,新加坡国立大学,新加坡 王秋旺,西安交通大学,中国 俞子涛,浙江大学,中国 张星,清华大学,中国 摘要截止日期 意向书截止日期为 2024 年 9 月 1 日 2 页摘要截止日期为 2024 年 10 月 1 日 入选投稿人将被邀请向 ASME《传热传质杂志》未来的特别专题提交全文论文。