目的:肺的计算机断层扫描(CT)的视觉评估通常用于诊断肺气肿。定量CT(QCT)可以补充视觉CT,但必须得到充分验证。QCT肺气肿定义为低衰减区域≤-950 Hounsfield单位(LAA-950)占据的肺体积≥5%。不一致的视觉和QCT评估并不少见。我们检查了大量受试者中的视觉和定量胸部CT评估之间的关联,以识别可能解释不一致的视觉和QCT发现的变量。材料和方法:对在爱荷华大学进行的COPDGENE研究1阶段入学的1221名受试者进行的1221名受试者的体积CT扫描进行了审查。参与者包括从不吸烟者,具有正常肺活量测量的吸烟者,肺活量测量值障碍和全球阻塞性肺病(金)阶段I – IV的倡议。ct扫描是由科德吉尼成像中心和爱荷华大学放射科医生定量评分和视觉解释的。个人级视觉评估与QCT测量值进行了比较。使用KAPPA统计量计算两组放射科医生之间的一致性。我们使用回归方法评估了与不一致结果相关的变量。结果:我们中心放射科医生和QCT之间存在肺气肿(61%的一致性,kappa,0.22 [0.17-0.28])是公平的一致性。当前的吸烟和女性性别与QCT阴性但视觉上可检测到的肺气肿显着相关。临床试验注册:临床Trials.gov标识符NCT000608764。类似的比较ISON显示了COPDGENE成像中心与QCT之间的略有一致性(56%的一致性,Kappa 0.16 [0.11-0.21]),两组视觉评估之间的中等一致(80%一致性,Kappa 0.60 [0.60 [0.54-0.65])。结论:肺气肿的视觉和定量CT评估之间的一面一致的一致性强调,需要利用这两种方式进行全面的放射学评估。不一致的结果可能归因于一个或多个在较大研究中需要进一步探索的因素。关键词:胸部成像,慢性阻塞性肺部疾病,观察者一致,Akaike信息标准
(CBCT),对 40 名术后头颈癌患者进行了训练。开发的 DCNN 在 Hounsfield 单位 (HU) 精度、图像对比度和 OAR 描绘精度方面提高了 CBCT。Jensen 等人使用 100 名前列腺癌患者队列证明,他们的新机器学习模型可用于快速估计癌症放射治疗中可行剂量目标的帕累托集,这可以直接加速治疗计划过程,并通过留出更多时间进行计划细化来间接提高最终计划质量。他们的模型通过利用优化优先级和输出初始化优于现有的机器学习技术。作为首次尝试,Mistro 等人已经证明知识模型可以有效地用作教学辅助工具,使缺乏经验的规划者在不到 2 天的时间内达到接近经验丰富的规划者的水平。拟议的辅导系统可以作为 AI 生态系统的重要组成部分,使临床医生能够有效、自信地使用基于知识的规划进行个性化放射治疗。基于 85 个训练案例和 15 个测试案例,Wang 等人展示了一种用于胰腺立体定向放射治疗 (SBRT) 规划的新型深度学习框架,该框架可以预测每个光束的通量图,从而绕过冗长的逆优化过程。在他们的工作中,Barua 等人证明了多元功能主成分分析 (MFPCA) 方法可用于表征接受辐射的下颌亚体积的时间轨迹。他们的工作表明,从放射治疗前后连续 CT 扫描中获得的放射组学特征的时间轨迹与放射治疗引起的下颌损伤相关,这可用于帮助早期治疗骨放射性坏死,这是口咽癌患者放射治疗的主要副作用。在一篇小型评论中,Luo 总结了目前用于预测宫颈癌结果的三种主要方法:统计模型、医学图像和机器学习,并讨论了使临床结果预测更准确、更可靠和更实用的一些挑战。
数字化和数值信号处理,gabriele pasquali -12 h(2 cfu),4月 - 六月gabriele.pasquali@unifi.infi.unifi.t课程是对数字化和信号处理的介绍,并应用于物理学中的传感器/检测器。在简要介绍了模数转换器的原理和特征之后,我们处理采样理论和信号重建。其他主题是:具有LTI(线性时间不变)系统的数字信号处理,离散的傅立叶变换,Z变换,自定义处理系统的设计。可以适应学生的特定需求。法医学科学的核分析技术,Massimo Chiari-12 h(2 cfu),1月至1月,chiari@fi.infn.it核分析技术(NAT),基于加速器的技术,离子光束分析(IBA),包括基本和分子分析和中间人群体分析(IBA),用于基于元素的质谱(IBA)。 (NAA),在核反应堆中进行元素分析。在本课程中,我们将审查NATS,并将申请提交大量法医问题,例如分析滥用药物,食品欺诈,伪造药物,枪击残留物,玻璃碎片,艺术品对象和文档的伪造以及人类材料。成像CT的新型前沿,Mara Bruzzi和Adriana Taddeucci -12 H(2 CFU),4月至6月mara.bruzzi@unifi.it,adriana.triana.taddeucci@unifi@unifi.itcompocted.itcompocted.itcompocted.itcomported.itcompoiced.itcompoich.itcompoich.itcompoich.it computed somography(CT)对医学实践产生了深远的影响。通过加深对解剖学,生理和病理学的了解,CT促进了疾病的检测和管理。CT的最新进展涉及光谱成像技术的发展和人工智能的使用(深度学习,DL)。光子计数CT(PC-CT)可以测量每个单独的光子与检测器相互作用的能量,从而可以鉴定单个材料(例如碘化的血液,软组织,骨骼)。在质子治疗中,通常通过适当的转换和校准系数从翻译光子衰减系数(Hounsfield的单位-HU)的X-CT图像中提取相对停止功率(RSP)图。质子CT(PCT)是一种新兴技术,可直接估算RSPS,从而改善了质子治疗的治疗计划和验证。本课程将在光子CT和Proton CT技术中介绍并讨论最先进和前沿研究。医学物理探测器,cinzia talamonti -12 h(2 cfu),4月至6月cinzia.talamonti@unifi.it.it介绍了现代方法,以检测医学物理学中的颗粒。将描述“剂量法”和“剂量计”的概念以及剂量测量的解释。布拉格灰腔理论和电离室是剂量测定法的基石。将讨论钻石,有机闪光灯,无定形硅,闪烁纤维和被动剂量计的尖端探测器,这些探测器将在临床绝对和相对剂量测定法中满足新需求。最终将引入微观测定法的概念。新的国际测量和实践守则包括在小田间剂量法中的电离室和“固态室”(硅,钻石)之间的比较。
