了解解决被迫移民和流离失所者融入问题的政策非常重要。被迫移民的人天生就很脆弱,面临暴力和贫困的风险。逃离祖国时,他们往往要承受身体和心理上的创伤,然后必须应对在新地方生活的挑战,无论是在新的国家还是地区。他们定居的地方和如何适应环境对他们未来的福祉和成功都至关重要。认识到哪些政策、机构、环境和支持系统最能促进流离失所者的融入,对难民及其收容社区来说,可能具有很高的人力和经济回报。此外,随着产生难民的事件变得更加分散和突然,及时和适当地实施有效政策对地方政府和社区的价值可能会增加。最近流离失所者人数的增加最能说明研究针对难民的政策的必要性日益增加。图 1 显示,全球难民总数已从 2000 年至 2010 年间的约 1000 万至 1200 万人增加至 2022 年超过 3500 万人的历史峰值。难民人数的增长大多发生在过去 11 年内,即 2013 年以来。乌克兰、叙利亚、委内瑞拉、南苏丹和阿富汗的局部危机对难民人数激增起了很大作用。不幸的是,这些危机的根源(战争、冲突、气候事件、政治迫害)可能会持续存在;这种情况尤其如此,因为气候变化给本已贫穷的国家带来了资源压力,而且与这些事件相关的政治不稳定性加剧(见 Hsiang, Meng 和 Cane,2011 年以及 Burke, Hsiang 和 Miguel,2015 年)。在大多数此类危机中,许多人在国内流离失所,而另一大部分人仍留在其原籍国附近,通常是发展中国家。一小部分人到达了有正式难民接收计划的发达国家。因此,难民融入无论在发展中国家还是发达国家都很重要。图 1 显示了难民的分布情况,按人均收入分为四类目的地国:低收入、中低收入、中高收入和高收入。1 图中显示,大多数难民不在高收入国家(该组以黄色表示)。2020 年,只有 20% 的难民在高收入国家,而 50% 的难民在低收入和中低收入国家(橙色和蓝色表示的组分别以橙色和浅蓝色表示)。然而,自 2017 年以来,居住在高收入和中高收入国家的难民比例有所增加,因此在富裕国家融入的前景变得越来越重要。成功到达发达国家的难民往往具有更高的人力
- 移民 - 国家建设,冲突和暴力 - 环境与发展 - 宪章城市(i)为什么有些国家有钱人和其他国家贫穷?(a)地理•Burke,M.,Hsiang,S.M。和Miguel,E.,2015。温度对经济生产的全球非线性影响。自然,527(7577),第235-239页。链接在此处可用http://emiguel.econ.berkeley.edu/assets/miguel_media/488/berkeley_news_study_finds_climate_climate_change_change_will_will_will_reshape_global_economy.pdf•J.M.枪支,细菌和钢:过去13,000年来每个人的短暂历史。兰登书屋。(请在网上搜索PDF副本)•Diamond,J。,2002。动植物驯化的进化,后果和未来。自然,418(6898),第700-707页。https://www.nature.com/articles/nature01019•Sachs,J.D.,Mellinger,A.D。和Gallup,J.L.,2001。贫穷和财富的地理。Scientific American,284(3),第70-75页http://www.joyhecht.net/east%20africa%20 climate%20Change/Sachs%20Change/sachs%20 geagraphy%20OF%20 POVERY%20&%20&%20Wealth%20Wealth%20Wealth; M.,2021。温度对生产力和劳动力供应的影响:印度制造业的证据。政治经济学杂志,129(6),第1797-1827页。https://www.journals.uchicago.edu/doi/10.1086/713733(b)机构和政治制定政治经济学
全球气候变化的影响是广泛的,威胁着全球数十亿人的生命,并破坏了自然(Masson-Delmotte 等人,2021 年;Pörtner 等人,2022 年)。这些影响往往是同时发生且相互关联的 (Lawrence et al., 2020),并造成物种灭绝和大规模死亡事件 (McKechnie & Wolf, 2010; Sippo et al., 2018)、生态系统服务恶化 (Cheung et al., 2021; Xi et al., 2021)、极端事件更频繁 (Arnell & Gosling, 2016; Davis et al., 2019; Laufkötter et al., 2020)、粮食 (Ortiz-Bobea et al., 2021; Wheeler & Braun, 2013)、水 (Gosling & Arnell, 2016; Schewe et al., 2014) 和能源 (van Ruijven et al., 2019)、不安全、空气和/或水传播疾病(Funari 等人,2012 年;Silva 等人,2017 年)、人类身心健康问题(Doherty 和 Clayton,2011 年;Palinkas 和 Wong,2020 年)、不良再分配(Pecl 等人,2017 年)和移民(Hauer 等人,2020 年)、社会不平等(Carleton 和 Hsiang,2016 年;Islam 和 Winkel,2017 年)以及经济生计受到破坏(Olsson 等人,2014 年;Smith 等人,2021 年)。为了帮助制定针对这些深远影响的应对措施,找出知识和政策方面的差距,促进国际合作研究,并确定未来工作的重点,本研究说明了过去 30 年来气候变化研究在学术文献中的演变情况,即关于适应和减缓未来气候变化的研究相对增加,而旨在理解气候变化物理基础的工作相对减少。建立气候变化科学知识的关键时刻是 1988 年联合国环境规划署 (UNEP) 和世界气象组织 (WMO) 成立了政府间气候变化专门委员会 (IPCC)。IPCC 的职责是向各国政府提供评估气候变化及其影响和设计全球有效气候政策所需的科学和社会经济知识。这包括通过三个工作组 (WG) 编制评估气候知识状况的报告,每个工作组分析一个不同的方面,自 2001 年以来,这些报告包括 WGI“物理科学基础”; IPCC 认为,第一次评估报告(FAR — 1990 年)的一个关键部分强调了全球变暖的后果和国际合作的重要性;第二次评估报告(SAR — 1995 年)强调了人类对地球气候的明显影响,为《京都议定书》奠定了基础;第三次评估报告(TAR — 2001 年)的部分内容强调了气候变化的复杂影响以及适应和可持续发展的紧迫性;第四次评估报告(AR4 — 2007 年)除其他发现外,得出的结论是,气候系统变暖是毫无疑问的,由于认识到了临界点,因此鼓励将变暖限制在 2°C 以内;第五次评估报告(AR5 — 2013 — 2014 年)证明气候变化影响空前加速,需要大幅减少排放并采取有效的适应措施,并为《巴黎协定》奠定了基础;第六次评估报告(AR6 — 2021 年)的部分内容概述了全球所有地区的气候变化都在加剧,导致生态系统损失越来越不可逆转,需要将全球变暖限制在 1.5°C 以内。这些 IPCC 活动(例如,审查评估、特别报告)以及自 1990 年代以来对气候变化的研究日益增多,创造了大量的学术成果。在此背景下,可通过非传统机器学习技术 (Cheng et al., 2018) 或文献计量/科学计量方法 (Fang et al., 2018; Z. Wang et al., 2018) 来综合现有研究,因为它们可以对数千种出版物进行快速、可靠的评估和分类,而使用传统方法则无法实现 (Berrang-Ford et al., 2021; Haunschild et al., 2016)。由此产生的综合研究可以提供对不同学科及其如何应对不断发展的气候问题的综合全面理解,从而增强气候知识,以更好地为相关政策和实践提供信息 (Lesnikowski et al., 2015; Tai & Robinson, 2018)。2015 年; Tai & Robinson,2018 年)。2015 年; Tai & Robinson,2018 年)。
TSV/晶圆级包装交互式介绍II(12月5日下午3:00至4:00p ong ong jun wei Jun Javier Microectronics Institute(IME),新加坡新加坡新加坡1360寄生表面耐受的调查调查2.5d/3d杂物互动的寄生表面对Interposer对Interposer效果的效果3 i II(预期)II(预期) 4:00p ng Yong Chyn微电子学研究所(IME),新加坡新加坡1143 1143晶圆级制造嵌入式冷却溶液在加热设备上使用TSV互连TSV/WAFER级别包装交互式互动式展示II(12月5日3:00 PM至4:00P BOON LONG LONG LONG INTRORE SINTERITE of MICROAPS INTREAPS MICREAPSICERS(MICEAPERES)(IMEAP)(IM)使用计算机视觉进行芯片测量进行芯片到磁力混合键合应用智能制造和设备技术交互式演示II(12月5日3:00 pm至4:00p Rahul Reddy komatireddi应用材料印度1403开发机器人支持的型树脂的开发,用于包装式销售量和设备的热模制工艺,以销售3个启示式智能和设备的热模型(in II)智能和设备的热模型(ind)智能智能式技术(约定) 4:00P Eun-JI GWAK韩国机械和材料研究所韩国1238丝网扫描优化,具有模具工艺模拟(虚拟DOE)智能制造和设备技术交互式演示II(12月5日3:00 PM至4:00p Submanian N.R.
