在过去的二十年中,实体瘤的抗肿瘤策略发生了显着转化。在最初的10年中,焦点从传统方法(例如DNA复制抑制和细胞分化靶向疗法)(例如受体酪氨酸激酶(RTK)) - 靶向疗法(1-3)。随后的十年见证了免疫疗法的出现,引入了血液学和实体瘤的新范式(4)。在各种免疫疗法中,免疫检查点抑制剂(ICIS)的出现,例如抗 - 程序性细胞死亡1(PD-1)/程序性细胞死亡配体1(PD-L1)和抗 - 细胞毒性T-淋巴细胞 - 相关的蛋白质4(CTLA-4)的抗乳腺癌和癌症的癌症,包括癌症和癌症,包括癌症,包括癌症,包括乳腺癌,包括乳腺癌的癌症,包括癌症癌症,包括梅洛癌,包括梅洛(Ren)癌症。癌(5-9)。然而,由于免疫抑制性肿瘤微环境(TME)和物理屏障(10),实体瘤通常会对免疫疗法构成挑战。为了重塑免疫抑制微环境,研究人员正在开发更多的免疫治疗策略(11,12)。此外,正在进行许多临床试验,以探索涉及ICIS的组合(7,9)。尽管ICI取得了显着的成功,但他们的好处仅限于一部分患者。胶质母细胞瘤(GBM)是最致命的神经胶质瘤类型,它表现出“冷”免疫微环境(13)。为了获得更好的治疗作用,正在开发新的抗癌疗法,例如ICIS,疫苗疗法和适应性细胞转移疗法(ACT),并已被证明对某些患者有益(14-17)。越来越多的研究人员致力于克服GBM中的免疫抑制微环境。BiblioMetrics试图在特定时期(18-20)理解科学领域的知识结构。在生物医学领域,已经进行了许多文献计量分析,以了解对特定研究领域的见解(21 - 23)。尽管如此,尚未进行全球关于神经胶质瘤免疫疗法的文献分析。这项研究的目的是概述整个科学领域,并通过系统地评估过去20年来系统地评估胶质瘤免疫疗法最有利的100篇论文。
denali Therapeutics正在进行一项持续的DNL310(NCT04251026)的I/II期试验,这是一种旨在治疗猎人综合征的外围和中枢神经系统表现的酶替代疗法。该试验的初始数据证明了DNL310的安全性。DNL310(NCT05371613)的II/III期试验始于2022年,目前正在进行中。在这项试验中,6岁以下的患者被随机分配,以盲目的方式接受DNL310或IDURSULFase(Elaprase)2年。ELAPRASE是FDA批准的酶替代疗法,用于治疗猎人综合征已有15年以上。小脑膜不会穿过血脑屏障,因此不处理猎人综合征的中枢神经系统表现。dnl310是I2融合到Denali专有酶的运输载体,该酶经过精心设计,可通过受体介导的大脑跨脑胞菌病穿越血脑屏障。
我们介绍了Cyberdemo,这是一种用于机器人模仿学习的新方法,该方法利用了模拟人类的策略来实现现实世界的任务。通过在模拟环境中纳入广泛的数据增强,CyberDemo在转移到现实世界中的传统现实世界中的表现优于传统的现实世界中的演示,从而处理了多样化的物理和视觉条件。无论其负担能力和在数据收集中的便利性如何,Cyberdemo Opper-pers-pers-pers-pers of-lip-term-term of基线方法在跨不同任务的成功率方面,并具有以前未见的对象的普遍性。例如,尽管只有人类的示范插入三瓣,但它仍可以旋转新型的四阀和五角谷。我们的研究证明了模拟人类示范对现实世界灵活操纵任务的重要潜力。更多详细信息可以在https://cyber-demo.github.io/
•我承诺向申请人和主管当局披露我所拥有的所有物质信息,这些信息有可能或可能有可能影响主管当局对申请的任何决定;以及我自己准备的任何报告,计划或文件的客观性,以提交主管当局;
已经取得了显着的迈进,该领域显然是由于缺乏高质量数据集而导致的。早期数据集(如Pigraphs [39]和Prox [16])启动了探索,但受到可扩展性和数据质量的约束。MOCAP数据集[14,30]使用Vicon等复杂的设备优先考虑高质量的人类运动限制。但是,他们通常缺乏捕获多样化和沉浸式的HSI。通过RGBD视频录制的可扩展数据集提供了更广泛的实用程序,但受到人类姿势和对象跟踪质量较低的阻碍。合成数据集的出现[1,3,4,55]提供了成本效率和适应性,但无法封装完整的现实HSI频谱,尤其是在捕获动态3D触点和对象跟踪时。为了应对这些挑战,这项工作首先引入了trumans(t rack hum a um a u u u u u u u u u u u u u u a ctio n s in s cenes)数据集。Trumans成为最广泛的运动捕获HSI数据集,涵盖了15个小时以上15个小时的室内场景中的各种相互作用。它捕获了全身的人类动作和部分级别的对象动力学,重点是接触的现实主义。通过将物理环境复制到准确的虚拟模型中,可以进一步增强此数据集。外观和运动的广泛增强都应用于人类和物体,以确保相互作用的高度有限。接下来,我们设计了一个计算模型,通过将场景和动作作为条件同时采取行动来应对上述挑战。我们对杜鲁士数据集和运动合成方法进行了全面的交叉评估。特别是,我们的模型采用自回归的条件扩散,场景和动作嵌入作为征用输入,能够产生任意长度的运动。为了整合场景上下文,我们通过在本地化的基础上查询全局场景的占用来开发有效的场景感知者,这在导航杂乱的场景时表现出了3D感知的碰撞避免的强大效率。为了将框架的动作标签合并为条件,我们将时间特征集成到动作片段中,使模型在粘附在给定的动作标签时随时接受指令。场景和动作条件的这种双重整合增强了我们方法的可控性,为在3D场景中合成合理的长期运动提供了细微的界面。将trumans与现有人物进行比较,我们证明了杜鲁士人明显提高了最先进的方法的性能。此外,我们的方法在定性和定量上进行了评估,超过了现有的运动综合方法,其质量和零击性能力在看不见的3D场景上,非常接近原始运动捕获数据的质量。除了运动合成之外,杜鲁士人已经针对人类的姿势和接触估计任务进行了基准测试,证明了其多功能性并将其确立为一系列未来的研究努力的宝贵资产。
手势在人类和人类机器人相互作用中起着关键作用。在基于任务的上下文中,诸如指向之类的神性手势对于指导关注与任务相关的实体至关重要。虽然大多数基于任务的人类和人类手机Di-Alogue专注于封闭世界领域的工作,但重新研究已开始考虑开放世界任务,在这种任务中,与任务相关的对象可能不知道与先验者相互作用。在开放世界任务中,我们认为必须对手势进行更细微的考虑,因为交互者可以使用桥接传统手势类别的手势,以便浏览其任务环境的开放世界维度。在这项工作中,我们探讨了在开放世界任务上下文中使用的手势类型及其使用频率。我们的结果表明需要重新考虑在人类和人类机器人相互作用的研究中进行手势分析的方式。
该课程将分为三个部分。在第一部分中,将向学生介绍国际人权法,探索其进化,基础原则,国家义务的本质,私人参与者的责任及其对算法责任制在发展和使用数字健康解决方案中的影响。第二部分将重点介绍在数字健康背景下应用的特定实质权利的详细检查。尤其是私人生活和数据保护的权利,健康权以及免于歧视的权利,将在个性化医学和AI(包括算法偏见)带来的挑战中进行审查。也将分析数字解决方案的文化权利和可接受性。最后,第三部分将讨论国际人权法的实施和执行。
从内容节制到野生动植物保护,需要模型识别细微或主观的视觉概念的应用数量正在增长。传统上,开发用于此类概念的分类器需要在数小时,天甚至数月内衡量的大量手动努力来识别和注释培训所需的数据。即使最近提出的敏捷建模技术可以快速地进行图像分类器的快速启动,但仍需要用户花费30分钟或更多的单调,重复的数据标签,以训练一个罪恶的分类器。利用了Fiske的认知灾难理论,我们提出了一个新框架,通过用自然语言相互作用代替人类标签,从而减少了由自然语言相互作用,从而减少了通过一个数量级来定义的总体努力所需的总体努力:从将2,000张标记的图像定义为只有2,000张图像到只有100张图像到100次自然语言相互作用。我们的框架利用了大型语言模型和视觉语言模型的基础模型的最新进展,以通过对话和自动标记培训数据点来雕刻概念空间。最重要的是,我们的框架消除了对人群来源注释的需求。此外,我们的框架最终生产出在成本敏感的方案中可部署的轻量级分类模型。在15个主观概念和2个公共图像分类数据集中,我们训练的模型的表现优于传统敏捷建模以及最先进的零拍模型,例如Align,clip,cupl,Cupl和大型视觉问题回答诸如Pali-X之类的模型。
我们提出了EN3D,这是一种增强的生成方案,用于雕刻高质量的3D人体化身。Unlike previous works that rely on scarce 3D datasets or limited 2D collec- tions with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D gen- erative scheme capable of producing visually realistic, ge- ometrically accurate and content-wise diverse 3D humans without directly relying on pre-existing 3D or 2D assets.为了应对这一挑战,我们引入了精心制作的工作流量,该工程实现了准确的物理建模,以从合成2D数据中学习增强的3D生成模型。在推断期间,我们集成了优化模块,以弥合现实的外观和粗3D形状之间的差距。特定于EN3D包含三个模块:一个3D发电机,可以准确地对可概括的3D Humans建模具有合成,多样和结构化的人类图像的逼真外观的可概括的3D Humans;几何雕塑家
