24. Arida E、Ashari H、Dahruddin H、Fitriana Y、Hamidy A、Haryoko、Irham M、Kadarusman、Riyanto A、Wiantoro S、Zein MSA、Apandi、Krey F、Mulyadi、Sauri S、Saidin、Suparno、Melmambessy EHP、Ohee HL、Saidin、Salamuk A、Supriatna N、Suruwaky AM Warikar EL、Wahyudi、Wikanta H、Yohanita AM、Slembrouck J、Legendre M、Gaucher P、Cochet C、Delrieu-Trottin E、Thébaud C、Mila B、Fouquet A、Borisenko A、Steinke D、Hocdé R、Semiadi G、Pouyaud L、Hubert N (2021) 通过 DNA 条形码探索鸟头半岛(印度尼西亚西巴布亚)的脊椎动物群。分子生态资源, 21: 2369-2387 (IF: 6.286)。
胶质母细胞瘤(GBM)是一种恶性和侵略性脑肿瘤,由于结构和细胞态在结构和细胞状态下,由于内部和肿瘤间异质性而难以治疗。GBM肿瘤的一个特征是围绕坏死核的缺氧利基存在。传统的体外模型(如单层和肿瘤培养物)衍生自患者样品的培养物并未概括这些特征,这可能会导致评估新的治疗策略的困难。将GBM细胞培养为类器官,可能会提供更好的方法来保留父肿瘤的表型,这是由于3D器官结构内存在明显的低氧和非催眠区域。在这里,我们提出了一种基于Hubert等人发表的方案,使用Neurocult™NS-A增殖介质从肿瘤培养物中产生GBM器官的方案。(2016)。1
1。Xu Y,Chiang YH,HO PC,Vannini N:线粒体决定HSC和T细胞的功能和命运。2023 CANCAR IMMUNOL RES 2。Girotra M, Chiang YH, Charmoy M, Ginefra P, Hope HC, Bataclan C, Yu YR, Schyrr F, Franco F, Geiger H, Cherix S, Ho PC, Naveiras O, Auwerx J, Held W, Vannini N: Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune系统。2023 NAT老化3。Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。 2020 NAT ProtoC 4。 Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。 Hennig C:_FPC:clustering_的灵活过程。 2024 cran.r- project.org/package=fpc 6。 Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。 2023 cran.r-project.org/package=cluster 7。 Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。的剂量反应分析 Landrum G等人:RDKIT:开源化学信息学。 2024 doi.org/10.5281/zenodo.591637Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。2020 NAT ProtoC 4。Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。Hennig C:_FPC:clustering_的灵活过程。2024 cran.r- project.org/package=fpc 6。Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。2023 cran.r-project.org/package=cluster 7。Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。Landrum G等人:RDKIT:开源化学信息学。2024 doi.org/10.5281/zenodo.591637
大白舰队”在当时是一个雄心勃勃的人道主义倡议。曼森设想的舰队将由封存的美国海军医疗船、航空母舰和其他辅助船只组成。这支和平时期的舰队配备了适当的物资和人员,准备为世界各地饥荒、灾难和流行病的幸存者提供及时的紧急援助。舰队的船员还将为这些人群提供教育和技术援助,使他们能够首先预防和减轻未来灾难的风险。2 明尼苏达州民主党参议员休伯特·H·汉弗莱向国会提出了曼森的想法,称拟议中的舰队是“美国善意、友谊和成熟的象征”。汉弗莱继续说,通过人道主义行动,舰队将展示“一个伟大国家的真正力量”。3
Glickman,M。E.和Jones,A。C.(1999)。评估国际象棋评级系统。Chance-Berlin,然后是纽约,12,21-28。Kim,B.,Wattenberg,M.,Gilmer,J.,Cai,C.,Wexler,J.,Viegas,F。等。 (2018)。 可解释性超出特征归因:具有概念激活向量(TCAV)的定量测试。 在国际机器学习会议上(pp。) 2668–2677)。 Lee,S。(2000)。 非负矩阵因子化算法。 nips。 McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Kim,B.,Wattenberg,M.,Gilmer,J.,Cai,C.,Wexler,J.,Viegas,F。等。(2018)。可解释性超出特征归因:具有概念激活向量(TCAV)的定量测试。在国际机器学习会议上(pp。2668–2677)。Lee,S。(2000)。 非负矩阵因子化算法。 nips。 McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Lee,S。(2000)。非负矩阵因子化算法。nips。McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。McGrath,T.,Kapishnikov,A.。。Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Kramnik,V。(2022)。在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。在Alphazero中获得国际象棋知识。国家科学院的会议记录,119(47),E2206625119。Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。(2018)。一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。Sci-Ence,362(6419),1140–1144。Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。。。其他人(2017年)。掌握没有人类知识的Go的游戏。自然,550(7676),354–359。Steingrimsson,H。(2021)。国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。在2021年IEEE游戏会议(COG)会议(pp。1–8)。Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。ARXIV预印ARXIV:2206.10498。(2023)。大型语言模型仍然无法计划(LLMS的基准计划和推理有关变更的理由)。van Opheusden,B.,Kuperwajs,I.,Galbiati,G.,Bnaya,Z.,Li,Y。,&Ma,W。J.专业知识增加了人类游戏玩法的计划深度。自然,618(7967),1000–1005。
Alain RIVIERE 先生 苏梅卡大学教授 – LISMMA,圣旺 Hubert KADIMA 先生 教师兼研究员,HDR EISTI – L@RIS,塞尔吉-蓬图瓦兹 Hamid DEMMOU 先生 大学教授 图卢兹大学 – LAAS,图卢兹 M . Omar HAMMAMI 教授,HDR ENSTA ParisTech U2IS,Palaiseau M. Stanislao PATALANO 讲师,HDR 那不勒斯费德里科二世大学 - 那不勒斯 Antoine RAUZY 先生 教授,Blériot-Fabre 主席中心主任,Châtenay-Malabry Nga NGUYEN 女士 教师兼研究员 EISTI – L@RIS,塞尔吉-蓬图瓦兹 Jean 先生 - Yves CHOLEY 讲师 Supmeca – LISMMA,Saint-Ouen M. Wassim ABIDA 技术经理、博士、UTC AEROSPACE SYSTEMS 工程师,Buc
这项工作涉及使用(i)基础模型从现实世界中的言语中设计出强大的帕金森氏病(PD)疾病检测器,以及(ii)语音增强(SE)方法。为此,我们首先在标准PC-GITA(S-PC-GITA)清洁数据上微调了几种基于基础的模型。我们的结果表明,与先前提出的模型相比。第二,我们评估了PD模型在扩展PC-GITA(E-PC-GITA)录音中的概括能力,该记录在现实的操作条件下收集,并观察到从理想到现实世界中的绩效下降。第三,我们对E-PC-GITA上的现成SE技术的培训和测试条件保持一致,并且仅针对基于基础的模型才能实现绩效的显着提升。最后,在S-PC-GITA(即WAVLM基础)和Hubert Base上培训了两个最佳基础模型,在增强的E-PC-GITA上产生了最高的表现。索引术语:帕金森检测,基础模型,深神经网络,健康言语
尽管经过证实的合成能力1,但我不能在一页上感谢这些,因为似乎重要的是要提及为这次冒险做出贡献的每个人。在所有帮助我进入本文结尾的人中,我要感谢我的导演RomualdBoné。我永远不会希望能够从如此多的关注,同理心和这种相关的科学建议中受益。感谢您的可用性,尽管董事在INSA中涉及工作量。我感谢我的主管Tedjani Mesbahi和Ahmed Samet在四年前为我提供了这一论文主题来信任我。有起伏,但他们的支持不可避免地在那里。感谢Hubert Cardot和Jean-Michel Vinassa同意带回我的论文。自从我第一个随访委员会以来,休伯特·卡多特(Hubert Cardot)和瓦阿法(Ouafae El Ganaoui-Mourlan)通过聆听,他们的问题和建设性的言论参与了我的作品的持续改进。感谢Ouafae现在与Pascal Venet和Djamila Aouada一起成为考官。我还要感谢Charlotte Alloudi和Asmae El Mejdoubi接受了这一邀请。于2019年9月开始他的论文,与同事远离同事的押韵,但这并没有阻止我建立非凡的联系。感谢所有与我共享的人(如此令人垂涎的..!)局C219:豪尔赫,Yasser,Paul,然后显然是Théo和传奇办公室的佛朗哥。没有能够详尽的命名,还要感谢INSA的文档,以提供仁慈和日常分享。我必须感谢所有的学生,我从中学到了很多东西。向所有同事致以宝贵的建议和鼓励,非常感谢。我也想到了我每天在INSA遇到的所有人,礼貌地欢迎他们,并在内部感谢他们的工作,接待,秘书处,会计,计算机维修,但也清洁,工作,调整恒温器,然后笑和幽默。如果我坚持到最后,这也要归功于我在七年前在INSA室内和INSA内部在Stras-Bourg举行的会议。我无法描述我所归功于斯特拉斯堡大学乐团的一切,因为我在音乐和人文上所采取的一切,因为我在那里遇到的所有人,现在是第二个家庭。感谢Viel Mols对Lionel和他的家人,
Suong Hoa,康考迪亚大学 Farjad Shadmehri,康考迪亚大学 David Hauber,特瑞堡大学 Ali Yousefpour,NRC Sayata Ghose,波音公司 Ralph Schledjewski,莱奥本大学 Pascal Hubert,麦吉尔大学 Remko Akkerman,特温特大学 Nick Warrior,诺丁汉大学 Turlough McMahon,空中客车 Philippe Olivier,克莱门特·阿德学院 Christophe Binetruy,南特中央理工学院 Suresh Advani,特拉华大学 Anoush Poursartip,不列颠哥伦比亚大学 Hua-Xin Peng,浙江大学 Conchur O’Bradaigh,爱丁堡大学 Peter Mitschang,凯泽斯劳滕 IVW Malin Akermo,斯德哥尔摩 KTH Rob Backhouse,劳斯莱斯 Terry McGrail,爱尔兰复合材料中心 Peter Schubel,南昆士兰大学 Brett Hemmingway,BAE 系统公司 Andy Foreman,QinetiQ Mike Hinton,HVMC Steffen Laustsen,西门子歌美飒 Clemens Dransfeld,代尔夫特理工大学 John Summerscales,普利茅斯大学
教授吉姆·沃森(伦敦大学学院),罗伯特·格罗斯(Robert Gross)教授(英国能源研究中心),克里斯·史塔克(Chris Stark)(气候变化委员会),马修·贝尔(Matthew Bell)(Frontier Economics),Sam Peacock和Alistair McGirr(SSE),Michelle Hubert(National Grid)(国家网格),Ana Musat(Ana Musat)(Ana Musat)马修·奈特(Siemens Energy),安迪·沃克(Andy Walker)和萨姆·法国人(Johnson Matthey),达芙妮·弗拉斯塔里(Daphne Vlastari)(巴斯夫),戴维·约翰逊(BASF),戴维·约翰逊(David Johnson)(英国米其林),阿尔扬·盖维克(Arjan Geveke)(能源密集型用户小组),本杰明·理查兹(Benjamin Richards)和尼克·尼克·拉金(Benjamin Richards)和尼克·拉金(Nick Lakin) Adam Read和Stuart Hayward-Higham(苏伊士回收和恢复英国),Signe Norberg和Rachel Solomon Williams(Aldersgate Group),James Alexander和Oscar Warwick Thompson(英国可持续投资与财务协会)。