摘要 本研究使用数据包络分析 (DEA) 开发了一个全面的框架,以评估各个部门 AI 应用的生态效率。通过以输出为导向的 DEA 模型,我们评估 AI 系统如何平衡性能效益与环境影响,并结合多项绩效指标和环境指标。该研究分析了医疗保健、金融和工业部门的数据,使用基准数据和环境评估来确定可持续 AI 实施的最佳实践。预期结果将表明该框架有效地识别了生态高效的 AI 实践,同时强调了数据可用性和不断发展的技术格局的局限性。该研究将有助于从理论上理解 AI 生态效率和实际决策,为组织提供在 ESG 参数内优化 AI 实施的见解,最终推进可持续的 AI 发展实践。关键词:生态效率、人工智能、数据包络分析、ESG。
现代机器学习彻底改变了各种领域的问题解决,包括软件工程,科学发现和医学。随着语言,图像和多模式数据的基础模型的进步,最终用户可以完成复杂的任务,否则将需要大量的专业知识和资源。然而,尽管有这些显着的进步,但深度学习仍面临许多局限性。重要的是,它在需要结构,逻辑和计划的问题上挣扎 - 传统符号推理表现出色的地方。在他的2011年经典思维中快速慢,卡尼曼将人类的认知描述为与神经网络类似于神经网络的直观,关联的“系统1”与逻辑上的“系统2”之间的相互作用。将这两个范式的互补优势结合到统一系统中是人工智能的基本挑战。Neurosymbolic编程是一个有希望的新兴范式,旨在应对这一挑战。我的研究重点是神经符号编程的基础,即跨越正式的语义,语言设计和学习算法,以及其在涉及自然语言推理,计算机视觉和多模式整合的现实世界中的应用。为此,我追求了两个互补的研究方向:扇贝,通用神经成像节目的框架,发表在(Neurips 2021),(PLDI 2023),(PLDI 2023),(AAAI 2024)中,以及在基础中的基础和趋势(FNT 2024)的基础和趋势(FNT 2024)中的邀请专着和趋势;以及一系列逐渐高级的应用,以增强推理的复杂性并整合了越来越多样化的模式,这些方式发表在(ICML 2020),(ACL 2023)和(TR 2024)中。
HAL 是一个多学科开放存取档案馆,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
七、综合收益总额 382,141,561.27 270,910,942.01 (一)归属于母公司股东的综合收益总额 387,548,128.58 278,515,189.10
tencent Robotics X,中国深圳05/2024 - 10/2024 Intelligent Agent Group研究实习生开发了一种使用具有低级控制政策的VLM桥接高级计划的方法。VLM指导的轨迹条件扩散政策已提交给ICRA2025。Avanade&UCL,英国伦敦10/2020 - 05/2021软件工程师开发并带领三人组成的团队创建了一个AI-Driention移动应用程序,旨在促进回收实践。该应用程序标识可回收项目,并通过奖励系统激励回收利用。Citrix Systems,中国北京07/2020 - 09/2020软件工程师Camp Camp carpus Star&Silver Prive开发了一种用于监视和管理虚拟机弹出窗口的应用程序,从而提高了虚拟化平台的安全性和操作效率。
摘要:基于PT的纳米催化剂为各种行业提供了出色的前景。然而,具有出色性能的PT负载低负载,以提高纳米催化剂的高效和稳定的纳米催化剂。在这项研究中,通过原位合成制备了具有超高PT含量,表现性能和碳黑色作为支持的纳米催化剂。这些〜2-nm颗粒在碳黑色和PT之间存在很强的S – P-D轨道杂交,从而均匀且稳定地脱离了碳黑色。这种独特的结构对氢进化反应有益。催化剂在氢进化反应中表现出显着的催化活性,在100 mA·Cm -2时表现出100 mV的电势,与商业PT/C催化剂的催化反应相当。质量活性(1.61 A/mg)是商用PT/C催化剂(0.37 A/mg)的四倍。超大PT加载(6.84wt%)为下一代电催化剂的发展铺平了道路。
•邀请了关于建模,估算和控制会议(MECC)2024的培训和验证培训和验证的教程课程。•邀请的演讲,标题为“α,β -Crown:具有控制和计划中应用的神经网络的正式验证框架”,在Informs年度会议上,2024年。•邀请的谈话,标题为“α,β-克罗:一个具有控制和计划中应用的神经网络的正式验证框架”,在空中交通工程中的自动驾驶汽车中心(AVIATE),2024年。•邀请的谈话,标题为“在神经网络验证中解决大规模的非凸优化问题”,信息优化社会会议,2024年。•第一和第二届机器学习正式验证的研讨会的共同组织者”,与国际机器学习会议(ICML)2022,2023。•与国际学习表现会议(ICLR)2022。
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
– Distinguished Overseas Scholars' Lecture Program, Peking University ( 北京大学海外名家讲 学计划 ), September, 2023 – Lecture Series, Gaoling Artificial Intelligence School, Renmin University, September, 2023 – Invited Talk at International Joint Conference on Theoretical Computer Science, August, 2020 – Invited Talk for China Computer Federation Inspiring New Ideas (CCF 啓智會 ) at Shanghai University of Finance and Economics, October, 2017 – 2015年6月,雷德蒙德的Microsoft Research邀请演讲 - 伯克利Econcs研讨会,2014年3月