人工智能 (AI) 是一项变革性技术,相当于人类文明早期的火。它是一种可用于解决复杂问题、做出预测、自动执行任务和提高生产力的工具。但就像火一样,它具有双重性质,既可能带来好结果,也可能带来坏结果。本课程不需要任何技术知识,专为希望领导在现实世界中部署 AI 系统、管理数据科学和设计团队以及建立和投资 AI 公司的人士而设计。本课程的目标是建立对 AI 可以做什么、机器学习如何工作、这些工具成功和失败的地方以及如何应对其道德影响的直觉。我们将探索广泛的商业应用,研究包括 ChatGPT、Midjourney、DeepBlue、Watson、AlphaZero、Twitter 和 TikTok 背后的推荐系统等在内的工具,并讨论在这些工具的帮助下管理人类团队的最佳实践。本课程是一门基于讲座的课程,包括基于案例的讨论、个人作业、期中考试和期末小组项目。最后,您应该成为识别有前景的用例、评估当前的局限性和识别潜在陷阱的专家,以便您能够应用人类和机器思维伙伴关系来发展新业务并颠覆任何领域的大师。
人类成长和发展课程审查委员会的成员是您的邻居,朋友,您孩子的朋友的父母,以及希望本指南成为我们之间和我们之间的对话的开始,我们指导我们的青年成年。我们欢迎您的建议,并重视您与我们的伙伴关系。The members of the 2023-24 Human Growth and Development Curriculum Review Committee are: ● Dana Brunner, parent, resident ● Rachel Chambers, parent, resident ● Cassandra Dennis, parent, resident ● Tim Fiocchi, parent, resident ● Lieneke Hafeman, parent, resident, health care professional ● Marquion Hudson, parent, resident ● Meredith Hughey, parent, resident, health care professional ● Mykola Kramper, parent, resident, health care professional ● Ellie Kyser, parent, resident, health care professional ● Dr. Jill Mallory, parent, resident, health care professional ● Yanni Mcrae, parent, resident ● Amanda Meyer, parent, resident, health care professional ● Tracy Quamme, parent, resident, health care professional ● Bryan Sirchio, clergy member ● Mel汤普森(Thompson),父母,居民,卫生保健专业人员●居民,地区医疗顾问汤姆·默温(Tom Murwin)博士●●布莱恩·韦弗(Brian Weaver),父母,居民,本委员会的社区主席●辛迪·怀斯(Cindy Wise),父母,父母,居民,居民,居民,学生,学生,居民●路易·皮格特(Louie Pigott) ELVEHJEM小学课程支持老师●詹妮弗·查普曼(Jennifer Chapman),父母,居民,沃布萨中级四年级老师●麦克法兰(McFarland)高中体育教育和健康老师的特里什财富,父母,居民,居民●斯蒂芬妮·佩普林斯基(Stephanie Peplinski中学
本文介绍了GenH2R,这是一个学习基于远见的人类到机器人(H2R)han-dover技能的框架。目标是为机器人配备能够以各种复杂轨迹的人类传递的几何形状可靠接收对象。我们通过通过全面的解决方案进行大规模学习H2R移交,包括程序模拟资产创建,自动演示式概述和有效的模仿学习。我们利用大型3D模型存储库,敏感的GRASP生成方法和基于曲线的3D动画来创建名为GenH2R-SIM的H2R交换模拟环境,并通过三个尺度级传递了现有模拟器中现有模拟器中的场景数量。我们进一步引入了一种蒸馏友好的演示生成方法,该方法自动产生了一百万个适合学习的高质量演示。最后,我们提出了一种4D模仿的学习方法,该方法通过将来的预测目标增强,以将示范示例提炼为视觉运动切换政策。在所有情况下,模拟器和现实世界中的实验评估都表现出比基线的显着提高(至少 +10%的成功率)。
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。“飞机”的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升至预选高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司提供
我写这本书的首要动机是一句您将在接下来的内容中多次看到的短语。这句话是:“转移性疾病无法治愈”。这句话之所以如此重要,是因为尽管我们在癌症研究方面取得了数十年的巨大进步,但一旦疾病扩散到远处器官,患者的治疗进展就非常有限。正因为如此,我们作为一个社区显然是时候尝试一些新方法了,因为标准化疗虽然在疾病的其他阶段有用,但无法让我们到达最后的顶峰,即转移性癌症的治愈。在我看来,其中一种这样的策略涉及将现代人工智能 (AI) 和机器学习 (ML) 方法应用于从癌症患者和癌症衍生细胞系中积累的大量基因组数据,以制定真正个性化的策略,以对个体患者进行癌症逆向工程。因此,本书的目标是让读者相信这是可能的,至少是一条值得追求的途径。首先我要说的是,我将在本书中强调人工智能对基因组数据的分析如何帮助我们更好地利用癌症靶向疗法。与此同时,其他人也在努力开发类似的方法,利用计算和人工智能方法来改善癌症免疫疗法的使用,因为免疫疗法提供了另一套可用于转移性癌症患者的工具。由于我不是免疫学家,我不会在这里讨论这些方法,因为它们可以在其他出版物中找到。
摘要 在图灵的“通用机器”之后,本文将直觉作为一个生成性概念和镜头来展现战后跨大西洋文化中人机关系的有效谱系。作为一种超越理性分析的感知、认识、预测和驾驭世界的方式,直觉对于适应我们当代的“算法条件”至关重要,在这种条件下,机器学习技术正在积极地重新分配人类和机器之间的认知,改变(非)人类经验的性质,并重新表达文化价值和欲望的问题。本文关注三个关键的历史时刻,使我们能够回顾性地瞥见英国和北美对我们与“新”技术不断变化的关系的兴趣和紧迫感的新兴凝聚—— 1) 20 世纪 50 年代:人工智能和控制论的诞生; 2)20 世纪 80 年代:个人电脑和软件文化的兴起;3)2010 年代:算法生活的开始。在每个时期,直觉的特定方面都表现出重要的作用,激发了我们与计算技术的情感和文化纠葛。虽然直觉在特定的历史关头获得了有效的牵引力,既是“人类”的本质定义,也是非人类的本质定义,但我认为,解决当前机器学习架构所引发的感官、社会政治、文化和伦理问题,需要适应内在的人机算法纠葛以及它们所居住和不断重塑的技术社会生态。
在这项工作中,我们提出了梦想,这是一种fMRI到图像的方法,用于重建从大脑活动中查看的图像,基于人类Vi-Sual System的基本知识。我们制作的反向途径模仿了人类如何看待视觉世界的高度和平行性质。这些量身定制的途径专门用于fMRI数据的解密语义,颜色和深度线索,反映了从视觉刺激到fMRI录音的前进途径。这样做,两个组件模仿了人类视觉系统中的反向过程:反向Vi-Sual Toalsosis Cortex(R-VAC)逆转了该大脑区域的途径,从fMRI数据中提取语义;反向平行的PKM(R-PKM)组件同时预测fMRI信号的颜色和深度。实验表明,从外观,结构和语义的一致性方面,我们的方法优于最新模型。代码将在https://github.com/weihaox/dream上提供。
从内容节制到野生动植物保护,需要模型识别细微或主观的视觉概念的应用数量正在增长。传统上,开发用于此类概念的分类器需要在数小时,天甚至数月内衡量的大量手动努力来识别和注释培训所需的数据。即使最近提出的敏捷建模技术可以快速地进行图像分类器的快速启动,但仍需要用户花费30分钟或更多的单调,重复的数据标签,以训练一个罪恶的分类器。利用了Fiske的认知灾难理论,我们提出了一个新框架,通过用自然语言相互作用代替人类标签,从而减少了由自然语言相互作用,从而减少了通过一个数量级来定义的总体努力所需的总体努力:从将2,000张标记的图像定义为只有2,000张图像到只有100张图像到100次自然语言相互作用。我们的框架利用了大型语言模型和视觉语言模型的基础模型的最新进展,以通过对话和自动标记培训数据点来雕刻概念空间。最重要的是,我们的框架消除了对人群来源注释的需求。此外,我们的框架最终生产出在成本敏感的方案中可部署的轻量级分类模型。在15个主观概念和2个公共图像分类数据集中,我们训练的模型的表现优于传统敏捷建模以及最先进的零拍模型,例如Align,clip,cupl,Cupl和大型视觉问题回答诸如Pali-X之类的模型。
摘要 计算复杂性是计算机科学和数学的一门学科,它根据计算问题的固有难度对其进行分类,即根据算法的性能对其进行分类,并将这些类别相互关联。P 问题是一类可以使用确定性图灵机在多项式时间内解决的计算问题,而 NP 问题的解可以在多项式时间内验证,但我们仍然不知道它们是否也可以在多项式时间内解决。所谓 NP 完全问题的解也将是任何其他此类问题的解。它的人工智能类似物是 AI 完全问题类,对于该类问题仍然没有完整的数学形式化。在本章中,我们将重点分析计算类,以更好地理解 AI 完全问题的可能形式化,并查看是否存在适用于所有 AI 完全问题的通用算法(例如图灵测试)。为了更好地观察现代计算机科学如何尝试解决计算复杂性问题,我们提出了几种涉及优化方法的不同深度学习策略,以表明无法精确解决高阶计算类问题并不意味着使用最先进的机器学习技术无法获得令人满意的解决方案。这些方法与人类解决类似 NP 完全问题的能力的哲学问题和心理学研究进行了比较,以强化我们不需要精确和正确解决 AI 完全问题的方法就可以实现强 AI 的概念的说法。
