建议引用:Würth, Christine (2020):新触觉一代:数字触摸如何影响我们的亲密方式,互联网政策评论,ISSN 2197-6775,柏林亚历山大·冯·洪堡互联网与社会研究所,第 9 卷,Iss。1,第 1-10 页,https://doi.org/10.14763/2020.1.1454
Assistant Professor 08/2017-Continuing Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, India Assistant Professor 02/2016-08/2017 Department of Chemistry, University of Gour Banga, Malda, India Senior Research Scientist 06/2015-01/2016 TCG Lifesciences Private Limited, Kolkata, India Postdoctoral Researcher 2014-2015 Department美国印第安纳州巴黎圣母院化学与生物化学,美国印第安纳州巴黎圣母院,布拉德利D史密斯教授项目标题:膜肿瘤激活膜的近红外分子探针,用于光热癌症疗法治疗学博士学博士学博士后研究员2011201132013 Alexander von Humboldt Alexander von Humboldt研究员 Germany, Prof. Ulf Diederichsen Project Title: Light Triggered Mechanistic Investigation of Membrane Fusion through a Model Caged SNARE Protein Postdoctoral Researcher 2010 2011 Department of Chemistry & Biochemistry, Florida State University (FSU), USA, Prof. Sourav Saha Project Title: Molecular Recognition and Sensing Research Associate (I) 1/11/2009 31/12/2009 Department of Biological化学,IACS,印度加尔各答的Jadavpur,Arindam Banerjee Ph.D.教授2004年1月11日31/10/2009生物化学系,IACS,IACS,印度加尔各答Jadavpur,Arindam Banerjee教授论文职位:使用基于肽的肽分子的自组装纳米材料的建设。主管:生物化学系Arindam Banerjee教授,
摘要:人工智能相关技术正在迅速发展。因此,人工智能正在应用于生活的许多领域,并日益影响社会的运作。人工智能的行为可能会造成伤害(例如,自动驾驶汽车造成交通事故)。民法规则,特别是有关因某人的过错或风险造成的损害责任的规则,是在人工智能发明之前,主要是在人工智能最近取得重大发展之前就已经存在了。其中包括《波兰民事诉讼法》,该法解决了与责任相关的问题,该法于 1964 年通过,至今仍然有效,尽管有一些修订。因此,波兰民法中没有引入任何直接涉及人工智能及其行为的法律后果的条款。欧洲法律也是如此。因此,需要分析现有法规是否可以适用于人工智能,或者是否应该对其进行适当调整。这种分析的出发点是赋予人工智能法律实体地位的可能性,使其能够独立承担其造成的损害的责任。这个问题需要在当今使用的技术(例如自动驾驶汽车)的背景下进行研究,也需要在将来进行研究。本文进行的分析明确了谁将对人工智能的行为承担责任。该领域的审议基于波兰和欧洲法律科学的成就。因此,本文关于立法变化的结论适用于所有以欧洲民法原则为基础的国家法律秩序。
经过两个潮湿的冬天,红杉疫霉菌蔓延到洪堡红杉州立公园。这个州立公园是加州州立公园系统中最大的公园之一,直到最近,它还是洪堡县南部 101 号公路走廊沿线红杉疫霉菌持续侵染的最北范围,已确认的感染仅限于公园核心区、布尔溪南部和东部以及南福克鳗鱼河沿岸的树木。然而,在这个冬天结束时,人们在溪流北侧的檀香树上发现了症状。这些症状与该地区的草原群落接壤,多年来,积极的计划烧荒通过杀死侵占的花旗松保持草原开放(图 1)。在草原系统底部附近进行初始 P. ramorum 采样之后,州立公园、加州大学合作推广中心和加州消防局的工作人员于五月下旬进行了一次地面调查,以确定 P. ramorum 向上蔓延的程度,以及是否有症状的森林区域可以纳入长期重复规定燃烧计划。
Biosketch:吉特·舒曼(Gunter Schumann)MD PhD教授,杰出教授兼人口神经科学和分层医学中心(PONS),位于伊斯特比,福丹大学,上海大学,上海大学和柏林Charite University Medicine,正在塑造并协调欧洲和全球心理健康研究的预测和神经生物学特征。在他的研究计划中,他在欧洲和全球开发并应用了人群神经科学和精确医学。舒曼教授构思并协调欧洲环境地平线项目,旨在减少主要环境挑战对心理健康的影响。他还领导成像项目,这是一项针对欧洲委员会最初资助的18个欧洲合作伙伴的开创性成像遗传学研究,由欧洲研究委员会(ERC)资助的Stratify研究和印度CVEDA研究。他是著名奖项的获得者,其中包括ERC的高级赠款,德国亚历山大·冯·洪堡基金会的洪堡奖,以及公关中国的几个奖项。他在赠款中吸引了超过4000万欧元的资金,并领导着“地球,大脑,卫生委员会”。
R. Dinakaran Michael博士教授生命科学院长,VELS科学,技术与高级研究研究所(Vistas)和Parasuraman A.S.博士洪堡博士后研究员杜宁渔业研究所生态学研究所04:20 pm-04:50 pm讨论04:50 pm -05:15 pm茶/咖啡休息海报查看和评估/网络R. Dinakaran Michael博士教授生命科学院长,VELS科学,技术与高级研究研究所(Vistas)和Parasuraman A.S.博士洪堡博士后研究员杜宁渔业研究所生态学研究所04:20 pm-04:50 pm讨论04:50 pm -05:15 pm茶/咖啡休息海报查看和评估/网络
海拔与经纬度相结合,可提供描述地形的三维 (3D) 位置信息,这对于山地研究和开发至关重要 (Ko¨ rner 2007;Malhi et al 2010)。亚历山大·冯·洪堡是最早认识到这一点的西方探险家之一:他在墨西哥、哥伦比亚和厄瓜多尔山区的探险表明,了解地球表面生物物理特征的 3D 位置对于制图以及了解沿海拔梯度相互作用的生物、非生物和人为因素之间的分布关系非常重要 (Godlewska 1999;Zimmerer 2006;von Humboldt 2013)。从那时起,人类学家、地理学家和生态学家就一直试图量化和可视化海拔如何影响山区的各种现象 (McVicar and K¨ rner 2013)。例如,研究表明,海拔升高会导致物种分布(Feeley 等人,2011 年)、作物多样性(Zimmerer,1999 年)、农业用地(Guillet,1981 年;Brush,1982 年;Young,1993 年)、净初级生产力(Beck 等人,2008 年;Zhang 等人,2013 年)和生物地球化学循环(Girardin
1 Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。
摘要。美国西海岸具有巨大的风力发电潜力,尽管由于复杂的沿海气候,其潜力有所不同。在不同天气条件下表征和建模涡轮轮毂高风对于风资源评估和管理至关重要。这项研究使用两阶段的机器学习算法来识别五个大规模气象模式(LSMP):后槽,后距离,距离,前距离,前距离,沟渠和加利福尼亚州高。LSMP与近海风模式有关,在租赁区域内的LiDAR浮标地点特别是在Humboldt和Morro Bay附近的风场开发。虽然每个LSMP都与特征性的大规模大气条件和相应的风向,昼夜变化和射流特征相应的差异,但在每个LSMP中仍然会发生风速的实质性差异。在洪堡,洪伯特的风速上升,在耕种后,距离和加利福尼亚 - 最高的LSMP中,剩余的LSMP中的风速降低,并降低。莫罗湾的平均速度响应较小,表现出在耕作后和加利福尼亚高的LSMP期间的风速提高。除了LSMP外,局部因素(包括土地 - 海热对比和地形)还改变了平均风和昼夜变化。高分辨率快速刷新模型分析在捕获洪堡的平均值和变化方面做得很好,但在莫罗湾(Morro Bay)产生了巨大的偏见,尤其是在预处理和加利福尼亚州高的LSMP期间。发现这些发现是为了指导研究特定的大规模和当地因素对加利福尼亚海上风的影响的案例,并有助于改善数值天气预测模型,从而增强了Orckey Wind Energy生产的功效和可靠性。