版权 © 作者 2020 年版权所有。开放获取。本文根据知识共享署名 4.0 国际许可进行许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
摘要 研究表明淀粉样蛋白前体 (APP) 调节突触稳态,但证据并不一致。特别是,控制 APP 向轴突和树突中突触运输的信号通路仍有待确定。我们之前已证明亨廷顿蛋白 (HTT)(与亨廷顿氏病有关的支架蛋白)调节神经突触中的 APP 运输,我们使用微流体皮质神经元网络芯片检查 APP 运输和定位到突触前和突触后区室。我们发现,在被 Ser/Thr 激酶 Akt 磷酸化后,HTT 调节轴突中的 APP 运输,但不调节树突中的 APP 运输。不可磷酸化的 HTT 的表达降低了轴突前向 APP 运输,降低了突触前 APP 水平,并增加了突触密度。消除 APPPS1 小鼠体内 HTT 磷酸化,过表达 APP,降低突触前 APP 水平,恢复突触数量,改善学习和记忆。Akt-HTT 通路和 APP 的轴突运输因此调节 APP 突触前水平和突触稳态。
亨廷顿舞蹈症 (HD) 是一种常染色体显性神经退行性疾病,由亨廷顿蛋白 ( HTT ) 外显子 1 的 CAG 三核苷酸重复扩增引起。目前,HD 尚无治愈方法,HD 患者的临床治疗侧重于症状管理。之前,我们展示了使用 CRISPR-Cas9 通过靶向附近 ( < 10 kb) 的 SNP(在外显子 1 附近产生或消除原间隔区相邻基序 (PAM))来特异性删除扩增的 HTT 等位基因 ( mHTT )。在这里,我们使用 Oxford Nanopore 平台上的多重靶向长读测序方法,全面分析了 983 名 HD 个体中 HTT 外显子 1 两侧 10.4 kb 基因组区域内的所有潜在 PAM 位点。我们开发了计算工具(NanoBinner 和 NanoRepeat)来对数据进行解复用、检测重复并对扩增或野生型 HTT 等位基因上的读数进行分阶段。通过此分析,我们发现 30% 具有欧洲血统的 HD 患者共有一个 SNP,这被证实是人类 HD 细胞系中 mHTT 等位基因特异性删除的有力候选者。此外,多达 57% 的 HD 患者可能通过组合 SNP 靶向成为等位基因特异性编辑的候选者。总之,我们提供了受 HD 影响的个体中 HTT 外显子 1 周围区域的单倍型图。我们的工作流程可应用于其他重复扩增疾病,以促进用于等位基因特异性基因编辑的指导 RNA 的设计。
亨廷顿蛋白(MHTT)的聚谷氨酰胺扩展引起了亨廷顿疾病(HD)和神经变性,但这些机制尚不清楚。在这里,我们发现MHTT促进核糖体失速并抑制小鼠HD纹状体神经元细胞中的蛋白质合成。MHTT的耗竭可增强蛋白质的合成并增加核糖体转移的速度,而MHTT直接在体外抑制蛋白质合成。fmrp是核糖体失速的已知调节剂,在HD中上调,但其耗竭对HD细胞中蛋白质合成或核糖体停滞的影响没有明显的影响。我们发现核糖体蛋白质和将核糖体与MHTT翻译的相互作用。高分辨率全球核糖体足迹(核糖表)和mRNA-seq表明,核糖体占用率向5'和3'端的核糖体占用率广泛转移,并且在HD细胞中选定的mRNA靶标上的独特单轴暂停。因此,MHTT阻碍了翻译伸长过程中的核糖体易位,这是一种可用于HD疗法的机械缺陷。
图1:使用(a)NT17衍生的肽和(b)GST-HTT-EXON1(46Q)融合蛋白的序列。用于GST-HTT-EXON1(46Q)融合蛋白,用因子XA裂解GST会启动聚集。(c)HTT-EXON1模拟肽HTT-EXON1(46Q)单独或与每个NT17肽孵育的THT聚合测定数据。HTT-EXON1(46Q)浓度约为10μM,与肽的孵育约为1:1 HTT-EXON1(46Q):肽比率。条件,然后平均为HTT-EXON1(46Q)对照。错误条表示SEM。使用学生的t检验, *表示p值<0.05,**表示相对于HTT-EXON1(46Q)控制,p值为<0.01。(d)在没有HTT-EXON1的情况下,用NT17衍生的肽进行的控制测定法(46Q)。对控制HTT-EXON1(46Q)绘制了响应以供参考。
溶液核磁共振(NMR)光谱是一种强大的技术,用于分析原子分辨率下大分子的三维结构和动力学。最近的进步利用了NMR在交换系统中的独特特性,以检测,表征和可视化激发的生物大分子及其复合物的稀疏人口稠密的状态,这些状态仅是短暂的。这些状态对常规生物物理技术看不见,并且在许多过程中起着关键作用,包括分子识别,蛋白质折叠,酶催化,组装和原纤维形成。所有的NMR技术都利用稀疏人群的NMR不可或缺的NMR可视和高度填充的NMR可见状态之间的交换,以将磁化特性从无形状态传递到可见的状态,在该状态下可以轻松检测和量化。有三类的NMR实验依赖于NMR可见和可视化物种之间距离,化学移位或横向松弛(分子质量)的差异。在这里,我说明了这些方法在亨廷顿基因的Exon-1编码的N末端区域的核核前核酸前寡核酸的复杂机制,在此中,CAG扩展了CAG的扩展,导致亨廷顿氏病,导致亨廷顿疾病,是一种致命的自身植物神经变性。我还讨论了四聚体的抑制如何阻止纤维形成的较慢(许多数量级)过程。
在人类基因组中的短串联重复扩张在多种神经系统疾病中的代表性过多。最近表明,亨廷顿(HTT)重复膨胀具有完整的外观,即40或更多的CAG重复序列通常会导致亨廷顿氏病(HD),在肌萎缩性侧索硬化症患者(ALS)的患者中代表过多。携带HTT重复膨胀的患者是渗透率降低(36-39 CAG重复序列),还是具有中间渗透率的等位基因(27-35 CAG重复序列),尚未研究ALS的风险。在这里,我们研究了HTT重复扩张在运动神经元疾病(MND)队列中的作用,搜索了扩展的HTT等位基因,并研究了与表型和神经病理学的相关性。包括含有C9ORF72六核苷酸重复扩张(HRE)的MND患者,以调查该组HTT重复扩张是否更常见。我们发现,与欧洲血统的其他人群相比,该队列中的中间体(5.63%–6.61%)和降低(范围为0.57%–0.66%)HTT基因扩展的率降低(范围为0.57%–0.66%),但没有MND队列与对照组之间的差异,对C9 orff的状态没有差异。在三名中间或降低渗透率HTT等位基因的患者尸检后,在尾状核和额叶中观察到亨廷顿蛋白夹杂物,但在神经系统的不同部位未检测到明显的体细胞骨髓。因此,我们首次证明了具有MND和中间和降低的渗透率HTT重复扩张的个体中的亨廷顿蛋白包含物,但是需要更多的临床病理研究来进一步了解HTT基因扩张相关的多oi ofiotiropropropy的影响。
摘要 回顾近年来的亨廷顿舞蹈症动物模型,发现许多microRNA在纹状体和大脑皮层中的表达水平发生改变,且大多下调。发生改变的microRNA包括miR-9/9*、miR-29b、miR- 124a、miR-132、miR-128、miR-139、miR-122、miR-138、miR-23b、miR-135b、miR- 181(均下调)和miR-448(上调),类似的变化此前也在亨廷顿舞蹈症患者中发现过。在动物细胞研究中,发生改变的microRNA包括miR-9、miR-9*、miR-135b、miR-222(均下调)和miR-214(上调)。在动物模型中,miR-155 和 miR-196a 的过表达导致突变型亨廷顿蛋白 mRNA 和蛋白质水平下降,纹状体和皮质中的突变型亨廷顿蛋白聚集体降低,并改善行为测试中的表现。miR-132 和 miR-124 的过表达也使行为测试中的表现得到改善。在动物细胞模型中,miR-22 的过表达增加了感染突变型亨廷顿蛋白的大鼠原代皮质和纹状体神经元的活力,并减少了 ≥ 2 µm 的亨廷顿蛋白富集灶。此外,miR-22 的过表达提高了用 3-硝基丙酸处理的大鼠原代纹状体神经元的存活率。外源性表达 miR-214、miR-146a、miR-150 和 miR-125b 会降低 Hdh Q111 / Hdh Q111 细胞中内源性亨廷顿蛋白 mRNA 和蛋白质的表达。有必要对亨廷顿氏病动物模型进行进一步研究,以验证这些发现,并确定特定的microRNA,它们的过度表达可抑制突变亨廷顿蛋白的产生和其他有害过程,并可能为治疗亨廷顿氏病患者和减缓其进展提供更有效的方法。关键词:动物模型;大脑皮层;亨廷顿蛋白;亨廷顿氏病;microRNA;神经退行性;纹状体;治疗策略
一种神经退行性疾病,导致运动不足,认知能力下降和精神病问题,亨廷顿氏病(HD)令人衰弱,最终是致命的。全球每100,000人中约有5至10人受到影响,并且症状通常在30至50岁之间显示(Pringsheim等,2012)。Huntingtin(HTT)基因中的遗传突变导致Huntingtin蛋白中异常长的聚谷氨酰胺链,这是HD的原因。该突变通过干扰神经元的生存和功能,尤其是在皮质和纹状体等区域,从而导致进行性脑细胞丧失和损伤。当前对HD的治疗主要控制症状,而不是减少疾病的病程,尽管进行了大量研究工作。缺乏可以改变疾病的治疗方法,强调如何迫切需要应对其基本原因的新策略。氧化应激和线粒体功能障碍是HD的主要因素,它会导致神经元能量缺陷,并最终导致细胞死亡(Gu等,1996)。通过干扰线粒体功能,突变的亨廷顿蛋白(MHTT)会增加危险的活性氧(ROS)并引发细胞死亡。
亨廷顿氏病(HD)是一种神经退行性疾病,其发病机理是由亨廷顿蛋白基因氨基末端的多谷氨酰胺扩张引起的,导致突变型HTT蛋白的促进。HD的特征是功能性运动功能障碍,认知障碍和神经精神病障碍。组蛋白脱乙酰基酶6(HDAC6)是一种微管相关的脱乙酰酶,已显示出在HD模型中诱导运输和释放缺失的表型,而HDAC6抑制剂的处理可通过增加HD的抑制作用,从而增加HD的表型,从而通过增加α-α-α-蛋白乙酰化酶的繁殖水平来增强HD的水平。 (MHTT)聚集体,建议HDAC6抑制剂作为HD强奸剂。在这项研究中,我们采用了体外神经干细胞(NSC)模型和HD的体内YAC128转基因(TG)小鼠模型来测试由Chong Kun Dang开发的新型HDAC6选择性抑制剂CKD-504(CKD Pharmaceu-tical Corp.,Korea)。我们发现,CKD-504小管蛋白乙酰化,微管稳定,轴突转运以及在体外突变亨廷汀蛋白的减少。在体内研究中,我们观察到CKD-504改善了亨廷顿氏病的病理:缓解行为缺陷,轴突运输的增加和神经元的数量,恢复的突触性功能(CS)电路中的突触功能,MHTT的积累,炎症,炎症,tau Hyperphosphospation and yac ifflosphosphoration in yac incy in yac inac inacy in yacy inacy in yacy incy incy in yac incy inace incy in y y ac yace incy incy in y y ac py y y ac py hyace yac yac128 tg incy incy incy incy complatizon Incormation。这些新型结果将CKD-504作为HD的潜在治疗策略。[BMB报告2023; 56(3):178-183]