• “Trading Around Geopolitics” by Giancarlo Corsetti (European University Institute and CEPR), Banu Demir (University of Oxford and CEPR) and Beata Javorcik (EBRD and CEPR) Discussant: Dzhamilya Nigmatulina (University of Lausanne) • “The Fragmentation Paradox: De-risking Trade and Global Safety” by Thierry Mayer (Sciences Po Paris和CEPR),IsabelleMéjean(科学PO PAIS和CEPR)和Mathias Thoenig(Lausanne and Cepr大学)讨论者:Carolina Villegas-Sanchez(Esade and Cepr)康(密歇根大学),安德烈·勒夫琴科(Andrei Levchenko)(密歇根大学和CEPR),Nitya Pandalai-Nayar(德克萨斯大学奥斯汀大学),密歇根大学(Michigan)(彼得亚大学)和Petia Topalova和Petia Topalova(IMF和CEPR)(IMF和CEPR)讨论:
Mohamed Benyoucef, h Yong-Heng Huo, b,c Sven Höfling, f Qiang Zhang, b,c,d Chao-Yang Lu, b,c,i, * 和 Jian-Wei Pan b,c, * a 中国科学技术大学,网络空间安全学院,合肥,中国 b 中国科学技术大学,合肥微尺度物质科学国家实验室,现代物理系,合肥,中国 c 中国科学技术大学,中科院量子信息与量子物理卓越中心,上海,中国 d 济南量子技术研究所,济南,中国 e 中国科学院,上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海,中国 f 维尔茨堡大学,技术物理,物理研究所和威廉康拉德伦琴复杂材料系统中心,维尔茨堡,德国 g 奥尔登堡大学,物理研究所,德国奥尔登堡 h 卡塞尔大学纳米结构技术与分析研究所,CINSaT,德国卡塞尔 i 上海纽约大学-华东师范大学物理研究所,中国上海
金属有机框架(MOF)是结晶材料,具有与金属中心结合的有机连接。他们提供了一种新的,有希望的吸附剂,其特征是它们的大量表面积,多样化的高质量结构和化学稳定性。自1995年发现以来(Yaghi等,1995),已经报道了超过20,000种MOF化合物的合成(Deng等,2012; Maurin等,2017),导致它们在吸附和催化行业中广泛利用。在其中,氨基功能化的MOF,具有锆为中央体的UIO-66型,由于其酸和基础耐药性和特殊的结构稳定性,已成为重金属离子吸附的潜在候选。随着MOF的应用越来越普遍,已经探索了各种制备方法。在整个制造过程中,诸如协调环境,协调连接,金属中心离子和化学配体等因素显着影响MOF的结构(Wang等,2013)。几个反应变量,包括温度,金属离子与有机配体的摩尔比,溶剂,反应系统的pH,成分浓度和反应时间,已被确定为最终的MOF结构和特性的关键决定因素(Deng等,2015)。MOF的设计和控制比传统的多孔材料更简单,因为它们可以在受控和轻度条件下合成,从而导致具有增强表面积,渗透率,耐热性和电气特性的材料(He等,2017; Huo等,2017)。重型MOF材料在合成方法中提供多功能性,并具有重金属离子的出色吸附性能,使其在实际应用中很有价值。
吴亚祥 1,2 ,余田 3 ,张淼 1,2 ,余大全 3 ,广川二郎 4 ,刘庆火 5 1 厦门大学深圳研究院,深圳 518057,中国,miao@xmu.edu.cn* 2 厦门大学电磁学与声学研究所,厦门 361005,中国,miao@xmu.edu.cn* 3 微电子与集成电路系,厦门,中国。 4 东京工业大学电气电子工程系,日本东京。 5 杜克大学电气与计算机工程系,美国达勒姆。 摘要 - 本文提出了一种采用玻璃微加工技术设计的 W 波段 16×16 单元共馈空气填充波导缝隙阵列天线。该天线由五层玻璃晶片层压而成。创新性地采用玻璃通孔(TGV)技术制作各层,该技术通过激光诱导深刻蚀工艺实现,并已初步应用于先进封装领域。根据湿法刻蚀工艺,在玻璃晶圆设计时考虑了10°的锥角。除了对天线进行电磁分析外,还对其力学和热学特性进行了仿真分析,以确保玻璃晶圆键合成功。实验结果表明,在中心频率94 GHz处天线增益为30.3 dBi,在W波段,当天线增益高于30 dBi时,带宽为13.3%。
Christopher Mezias *1,Bingxing Huo *2,Mihail Bota 1,Jaikishan Jayakumar 3,Partha P. Mitra +1对公共Marmoset的抽象兴趣正在增长,这是由于与实验室小鼠相比,与人类相比,与小鼠和Marmoset Brainecters的相比,与人类相比,由于与人类的进化近端而增长,包括鼠标和Marmoset Brainecters的类型,以及连接性的连接。创建一个可操作的比较平台很具有挑战性,因为这些大脑具有独特的空间组织和专家神经解剖学家的不同意。我们提出了一个一般的理论框架,以在整个分类单元之间将命名的地图集联系起来,并使用它来建立Marmoset和小鼠大脑之间的详细对应关系。与传统的观点相反,即大脑结构在较高级别的Atlas层次结构上可能更容易建立联系,我们发现尽管命名了差异,但在叶子水平上的细胞层次更细。利用现有的地图集和相关的文献,我们为这两个物种创建了叶片水平结构列表,并在它们之间建立了五种类型的对应关系。在小鼠中的43%的结构中发现了一到一条关系,而摩尔莫斯群岛的结构中有47%,而小鼠的25%和10%的棉花糖结构是无关的。其余结构显示了我们量化的一组更复杂的映射。通过这两个物种的体积图谱实现此对应关系,我们提供了一个计算工具,用于查询和可视化相应的大脑之间的关系。我们的发现为实验室小鼠和公共摩尔群岛中的中尺度连通性和细胞类型分布的计算比较分析提供了基础。
∗剑桥大学的MRC生物统计局。JB得到Bayes4Health(EPSRC EP/R01856/1)的支持。JB,PB和DDA得到了英国医学研究委员会(MRC)计划MRC_MC_UU_00002/11的支持。pb,th和dda由Wellcome Trust(227438/Z/23/Z)提供支持。ASW和KBP得到了美国国家健康研究所(NIHR)卫生保护研究部门的卫生保健相关感染和抗菌素抵抗,并在牛津大学与英国卫生安全局(UKHSA)(NIHR200915)合作。ASW得到了牛津NIHR生物医学研究中心的支持。KBP得到HUO家庭基金会和医学研究基金会(MRF-160-0017-ELP-POUW-C0909)的支持。BDMT通过MRC计划赠款(MC_UU_00002/2)和主题资金(MC_UU_0002/20-精密医学)支持BDMT。为了开放访问,作者已将创意共享归因(CC BY)应用于任何作者接受的手稿版本。†英国卫生安全局;剑桥大学的MRC生物统计学部门‡牛津大学纳菲尔德医学系; NIHR牛津生物医学搜索中心; NIHR医疗保健相关感染和抗菌耐药性研究部门,牛津大学。 * * *数学科学学院,诺丁汉大学††MRC生物统计学部门,剑桥大学;英国卫生安全局†英国卫生安全局;剑桥大学的MRC生物统计学部门‡牛津大学纳菲尔德医学系; NIHR牛津生物医学搜索中心; NIHR医疗保健相关感染和抗菌耐药性研究部门,牛津大学。* * *数学科学学院,诺丁汉大学††MRC生物统计学部门,剑桥大学;英国卫生安全局§牛津大学原科健康科学系;国家健康研究所健康保护研究所(NIHR HPRU)在牛津大学数学系曼彻斯特大学卫生保健相关感染和抗菌素抵抗方面的抗菌抗药性”。
Authors: Lianglong Sun 1,2,3 , Tengda Zhao 1,2,3, # , Xinyuan Liang 1,2,3,# , Mingrui Xia 1,2,3,# , Qiongling Li 1,2,3 , Xuhong Liao 4 , Gaolang Gong 1,2,3,5 , Qian Wang 1,2,3 , Chenxuan Pang 1,2,3 , Qian Yu 1,2,3 , Yanchao Bi 1,2,3,5 , Pindong Chen 6 , Rui Chen 1 , Yuan Chen 7 , Taolin Chen 8 , Jingliang Cheng 7 , Yuqi Cheng 9 , Zaixu Cui 5 , Zhengjia Dai 1,2,3 , Yao Deng 1 , Yuyin Ding 1 , Qi Dong 1 , Dingna Duan 1,2,3 , Jia-Hong Gao 10,11,12 , Qiyong Gong 8,13 , Ying Han 14 , Zaizhu Han 1,3 , Chu-Chung Huang 15 , Ruiwang Huang 1,3 , Ran Huo 16 , Lingjiang Li 17,18 , Ching-Po Lin 19,20,21 , Qixiang Lin 1,2,3 , Bangshan Liu 17,18 ,Chao Liu 1,3 , Ningyu Liu 1 , Ying Liu 16 , Yong Liu 22 , Jing Lu 1 , Leilei Ma 1 , Weiwei Men 10,11 , Shaozheng Qin 1,2,3,5 , Jiang Qiu 23,24 , Shijun Qiu 25 , Tianmei Si 26 , Shuping Tan 27 , Yanqing Tang 28 , Sha Tao 1 , Dawei Wang 29 , Fei Wang 28 , Jiali Wang 1 , Pan Wang 30 , Xiaoqin Wang 23,24 , Yanpei Wang 1 , Dongtao Wei 23,24 , Yankun Wu 26 , Peng Xie 31,32 , Xiufeng Xu 9 , Yuehua Xu 1,2,3 , Zhilei Xu 1,2,3 , Liyuan Yang 1,2,3 , Huishu Yuan 16 , Zilong Zeng 1,2,3 , Haibo Zhang 1 , Xi Zhang 33 , Gai Zhao 1 , Yanting Zheng 25 , Suyu Zhong 22 , Alzheimer's Disease Neuroimaging Initiative, Cam-CAN, Developing Human Connectome Project, DIDA-MDD Working Group, MCADI, NSPN, and Yong He 1,2,3,5,*
3校长,晚母猪。Kamaltai Jamkar Mahila Mahavidyalaya,Parbhani。商学院 - SRTM University,NANDED-印度基于基于资源的观点理论的摘要,这项研究研究了供应链集成(内部,客户和供应商集成)如何影响公司的绩效。使用经验研究方法,通过97名经理和也门制药公司员工的问卷收集数据,以评估SCI对公司绩效的影响。通过使用SPSS和SMARTPLS软件分析数据,研究结果表明,内部和客户集成显着影响公司的性能,而供应商集成并未显示出显着效果。该研究为公司提供了见解,这些公司可以通过在其生产和营销过程中有效实施内部,客户和供应商的集成来提高其整体绩效。此外,SCI促进了直接沟通,并与客户和供应商的关系更牢固,最终导致提高效率和竞争力。关键字:供应链集成(SCI),内部集成(II),客户集成(CI),供应商集成(SI),公司绩效(FP)和基于资源的视图(RBV)。1。引言供应链集成(SCI)对于确保长期组织成功至关重要(Huo等,2014)。要保持竞争力,企业必须与供应商和客户紧密合作,以促进牢固的合作伙伴关系。SCI涉及制造商与供应链合作伙伴之间的战略协调,以优化整个供应链中的内部和外部资源和能力(Flynn等,2010)。一起运行时,供应链成员可以提高绩效,提高盈利能力并有效地满足客户需求(Kumar等,2017)。被认为是获得竞争优势的关键因素,SCI已被证明会显着影响公司的运营效率和财务绩效(Devaraj等,2007; Hendijani&Saeidi Saei 2020)。在当今的商业格局中,诸如采购原材料,管理库存和分销商品之类的任务不再局限于各个组织中,而是转向更广泛的供应
[4] Ding, H., Liang, X., Xu, J., Tang, Z., Li, Z., Liang, R.* , & Sun, G.* (2021). 用于柔性传感器的超强拉伸、高强度和快速自恢复的水解水凝胶。ACS Applied Materials & Interfaces,13(19),22774-22784。[5] Tang, Z., Hu, X., Ding, H., Li, Z., Liang, R.* , & Sun, G.* (2021). 绒毛状聚(丙烯酸)基水凝胶吸附剂,具有快速高效的亚甲蓝去除能力。胶体与界面科学杂志,594,54-63。[6] Huo, P., Ding, H., Tang, Z., Liang, X., Xu, J., Wang, M., Liang, R.* , & Sun, G.* (2022)。具有高韧性和快速自恢复的半互穿网络导电丝素蛋白水凝胶,可用于应变传感器。国际生物大分子杂志。[7] 王梅、梁琳、刘倩、梁晓燕、郭红、李哲、梁荣* 和孙光杰 (2022)。磷酸氢二钾对磷酸镁钾水泥性能的影响。建筑与建筑材料,320,126283。[8] 郭红、唐哲、刘倩、徐建、王梅、梁荣* 和孙光杰 (2021)。超吸水绒毛状纳米复合水凝胶实现超稳定防冲刷水泥浆。建筑与建筑材料,301124035 [9] 刘倩、陆哲、胡晓、陈斌、李哲、梁荣*、孙光杰* (2021)。水泥基体原位聚合制备机械强度高的聚合物-水泥复合材料。建筑工程杂志,103048。 [10] 郭华、徐建、唐哲、刘倩、王明、梁荣*、孙光杰* (2022)。超吸水聚合物基防冲刷外加剂对海水混合水泥浆体性能的影响。材料与结构,55(2),1-14。 [11] 王明、刘倩、梁荣、徐建、李哲、梁荣*、孙光杰 (2022)。偏高岭土对高水固比磷酸镁钾水泥性能的影响。土木工程材料学报,34(9),04022227。
Michael Hawrylycz ID 1 * , Maryann E. Martone ID 2,3 * , Giorgio A. Ascoli 4 , Jan G. Bjaalie 5 , Hong-Wei Dong 6 , Satrajit S. Ghosh 7 , Jesse Gillis 8 , Ronna Hertzano 9,10,11 , David R. Pangso 12 , Pangso R. Yong . o Kim 14 , Ed Lein 1 , Yufeng Liu 15 , Jeremy A. Miller 1 , Partha P. Mitra 16 , Eran Mukamel 17 , Lydia Ng 1 , David Osumi-Sutherland 18 , Hanchuan Peng 15 , Patrick L. Ray 1 , Raymond Sanchez 19 , Rev. Alexevski 0 , Richard H. Scheuermann 21 , Shawn Zheng Kai Tan 18 , Carol L. Thompson 1 , Timothy Tickle 22 , Hagen Tilgner 23 , Merina Varghese 13 , Brock Wester 24 , Owen White 11 , Hongkui Zeng 1 , David Averman , 215 , Thomas L. Athey 27 , Cody Baker 28 , Katherine S. Baker 1 , Pamela M. Baker 1 , Anita Bandrowski 2 , Samik Banerjee 16 , Prajal Bishwakarma 1 , Ambrose Carr 25 , Min Chen 29 , Roni Choudhury , 26 , Jon Heather Creah , 11 ence D'Orazi 25 , Kylee Degatano 22 , Benjamin Dichter 28 , Song-Lin Ding 1 , Tim Dolbeare 1 , Joseph R. Ecker 30 , Rongxin Fang 31 , Jean-Christophe Fillion-Robin 26 , Timothy P. Gilles 29 , James Gilles 29 Gouwens 1 , Guo-Qiang Zhang 32 , Yaroslav O. Halchenko 33 , Nomi L. Harris 34 , Brian R. Herb 11 , Houri Hintiryan 6 , Gregory Hood 20 , Sam Horvath 26 , Bingxing Huo 16 , Dorota Jare 7 , Jian Khazan 22 , Elizabeth A. Kiernan 22 , Huseyin Kir 18 , Lauren Kruse 1 , Changkyu Lee 1 , Boudewijn Lelieveldt 35,36 , Yang Li 37 , Hanqing Liu 30 , Lijuan Liu 15 , Anup Markuhar 11 , Mathew Mathew , 12 , James L. Mezias 16 , Michael I. Miller 27 , Tyler Mollenkopf 1 , Shoaib Mufti 1 , Christopher J. Mungall 34 , Joshua Orvis 11 , Maja A. Puchades 5 , Lei Qu 15 , Joseph P. Receveur 11 , Bing Ren 37 , Nat Brian Squist 13 , Daniel Squist , 39 ward 40 , Cindy TJ van Velthoven 1 , Quanxin Wang 1 , Fangming Xie 41 , Hua Xu 42 , Zizhen Yao 1 , Zhixi Yun 15 , Yun Renee Zhang 21 , W. Jim Zheng 42 , Brian Zingg 6