Liminal是Pierre Huyghe与策展人Anne Stenne密切合作的展览,它与过去十年来的作品一起展示了主要的新作品,尤其是Pinault Collection。皮埃尔·惠格(Pierre Huyghe)从那以后一直质疑人与非人类之间的关系,并将他的作品视为投机性小说,从中出现了世界其他方式。小说是“访问可能或不可能的工具,可能是或不能成为可能的东西”。 Pierre Huyghe使用Liminal,将Punta Della Dogana转变为一种持续发展的动态,敏感的环境。展览是人类和非人类生物居住的暂时性状态,成为不断学习,改变和杂交的主观性形成的所在地。他们的记忆正在扩大,从渗透到展览中的事件中捕获的事件(既可见又不看不见)的信息正在扩大。对于Pierre Huyghe来说,展览是一种不可预测的仪式,在没有层次结构或确定性的情况下产生新的可能性并共存。与Liminal一起,他称我们对现实的看法受到质疑,好像我们从人类以外的其他角度变得对自己变得陌生。
“Liminal” 是皮埃尔·于热与策展人安妮·斯坦内密切合作举办的展览,除了展出近十年来的重要新创作,尤其是来自皮诺收藏的作品。皮埃尔·于热长期以来一直在质疑人类与非人类的关系,并将其作品视为思辨性的虚构,从中诞生了其他世界形态。对他来说,虚构是“访问可能或不可能——可能或不可能的东西的工具”。通过“Liminal”,皮埃尔·于热将海关大楼变成了一个不断发展的动态、敏感的环境。展览是人类和非人类生物居住的短暂状态,成为不断学习、变化和混合的主观性的形成场所。他们的记忆随着从贯穿整个展览的可感知和不可感知的事件中捕捉到的信息而不断扩展。对于皮埃尔·于热来说,展览是一场不可预测的仪式,新的可能性在这里产生并共存,没有等级制度或决定论。通过《Liminal》,他质疑我们对现实的看法,仿佛我们正从非人类的角度对自己变得陌生。
JesúsBarreiro-Hurlé,欧洲委员会联合研究中心,西班牙Sonoko Bellingrath-Kimura,Zalf&Humboldt-Universität-Zu Zu Berlin,德国Gabriele Berg,Leibniz Gabriele Berg,Leibniz农业工程学研究所Gaume,农业镜,瑞士克里斯蒂安·霍格(Christian Huyghe),法国国家农业,食品与环境研究所(INRAE),法国斯特芬·科尔布(Steffen Kolb),Zalf,Zalf,Zalf,Zalf,Fatima Lehnhardt,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf,Zalf德国的Cottbus-Senftenberg,Sandro Luis Schlindwein,圣卡塔琳娜联邦大学,巴西Pham Thuy,澳大利亚阿德莱德大学,澳大利亚和Cifor-Icraf,全球团队,印度尼西亚高恩Yang,中国中国农业农业大学
FMN1/GREM1基因区域内的遗传基因座与结直肠癌的体重指数相互作用Elom K. Aglago 1,Andre Kim 2,Yi Lin 3,Conghui Qu 3,Marina Evangelou 1,Yu Ren 1,Yu Ren 1,John Morrison 2,John Morrison 2,John Morrison 2,John Morrison 2,John Morrison 2,Demetri Albans,Demetri Albans,4,4,Elizabeth Art Art I. BARN I. BARN。 Timothy Bishop 9,Emmanouil Bouras 10,Hermann Brenner 5,11,12,Daniel D. Buchanan 13,14,15,Arif Budiarto 16,17,Carreham,Robert Care 19,Tjeng Wawan Cenggoro 7 V. Conti 2,Matthew Devall 29,Virginia Diez-Obrero 1730,David 33,Nikiu,34 22,JaneC ,Michael Tameha 33,Jeroen R. Huyghe 3,Mark A. Jenkins 38,Kristina Jordahl 3,Amit D. Joshi 22,24,Eric S. Kawaguchi 2,Temitope O. Keku 43 Bharuno Mahesworo 7,Marko Mandic 5,28,Mireia ob on-Santacana 17,30,31,Victor Moreno 17,30,31,50,Neil Murphy 34,Nai Hong,515,Rame ly A. Newcomb 3,54 Palmer 60,Nikos Papadimitriou 34,Bens Pardamean 7,Anita R. Peoples 57,Elizabeth A. Platz,31,A。Potter,Ross L. Prentice 3,Gad Rennert 63.64.65 EN 70,Anna Bina 4,Maria St.后,41,Ltd。C. Stern 2,Yu-Ru Su 3,Catherine M. Tangen 72,Stephen N. Thibodeau 73,Duncan C. Thomas 2,Yu Tian 26.74 ,Jun Wang 2,Emily White 3,54,Alicja Wolk 46,Michael O. Woods 80,Anna H. Wu 2,Natalia Zemlianskaia 2,Li Hsu 3,81,W。JamesGauderman 2,Ulrike Peters,354,354,Peter Konstantis和K. tsantis和K. Tsino 100 82 Campbell。
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。