1986 年,欧洲大型河流网络在欧洲委员会的支持下成立。经过多次研讨会,该网络的首部成果是 1989 年由 John Wiley 出版的《大型冲积河流的历史变迁:西欧》。与此同时,作为欧盟伊拉斯谟计划的一部分,人员交流导致两个研究小组就分析河流系统变化的不同但互补的方法展开辩论。这两个小组分别来自法国里昂大学和英国拉夫堡大学。里昂大学是法国国家科学研究院环境跨学科研究计划 (PIREN) 的中心。他们对罗纳河的研究促成了“河流水文系统”这一术语的引入,为生态变化分析提供了一个综合的多学科背景。拉夫堡大学成立了一个多学科团队——淡水环境小组,其目标是根据可预测的环境梯度模拟生物群落的分布,并利用这些模型评估河流调节的影响。将两套思想和方法融合成一部作品不仅是一个令人兴奋的目标,也是一个有趣的学术挑战!这本书的最初想法诞生于 G. E. Petts 和 M. T. Greenwood 在一辆载有 50 名拉夫堡一年级学生的长途汽车上前往斯卡伯勒的路上的一次谈话中。共同作者
Geiger,Katherine。预测和观察到的补给源水与地下水和土壤/含水层物质的化学相互作用:亚利桑那州西盐河谷和东盐河谷的两个案例研究。HydroSystems 分析。............. Greenslade,William。亚利桑那州、犹他州和科罗拉多州补给 N 含水层系统的估算。西南地下水顾问。.............................................................. Hanson,Don。地下水补给及其对非点源硝酸盐污染的影响。Clear Creek Associates。.............................................................. Huber,Ronald。Fountain Hills 卫生区:从处置到补给,亚利桑那州 Fountain Hills 镇的长期解决方案。HydroSystems,Inc....................................................................................................................... Jimenez,Blanca。对废水补给含水层作为供水源的评估。墨西哥大学。............................................................................................. Katen,Matthew。案例研究:加利福尼亚州阿拉米达县的湖泊链项目。阿拉米达县防洪区。...................................................................... Lara,Fernando。墨西哥科阿韦拉州 Comarca Lagunera 含水层人工含水层补给可行性研究。国家水资源委员会。.................... Light,Marie。使用指示参数确定药物的存在
1水资源管理主席和水通系统建模,德国柏林技术大学柏林2号柏林2号大学气象研究所,弗雷伊大学柏林,柏林,柏林,柏林3号水资源系,地理 - 世界性科学和地球科学和地球学院(ITC),特威特(ITC),特威特(ITC),特威特(ITC工程技术,荷兰恩斯切德大学,特温特大学
1。贝克曼学院2。CSL Studio 3。电气和计算机工程大楼(ECEB)4。协调的科学实验室(CSL)5。水系统实验室6。国家超级计算应用中心(NCSA)7。Nick Holonyak,Jr。Micro&Nanotechnology实验室8。 Newmark土木工程实验室9. Siebel计算机科学中心10。 肯尼健身房附件11。 数字计算机实验室(DCL)12。 Grainger工程库13。 Grainger加载码头14。 塔尔伯特实验室15。 机械工程实验室(MEL)16。 校园教学设施(CIF)17。 材料科学与工程大楼(MSEB)18。 运输大楼19。 Everitt实验室20。 Sidney Lu机械工程大楼(MEB)21。 Loomis实验室22。 材料研究实验室(MRL)23。 Illini Union 24。 自然历史建筑物25。 工程厅26。 Graziano Plaza 27。 库存馆Nick Holonyak,Jr。Micro&Nanotechnology实验室8。Newmark土木工程实验室9.Siebel计算机科学中心10。 肯尼健身房附件11。 数字计算机实验室(DCL)12。 Grainger工程库13。 Grainger加载码头14。 塔尔伯特实验室15。 机械工程实验室(MEL)16。 校园教学设施(CIF)17。 材料科学与工程大楼(MSEB)18。 运输大楼19。 Everitt实验室20。 Sidney Lu机械工程大楼(MEB)21。 Loomis实验室22。 材料研究实验室(MRL)23。 Illini Union 24。 自然历史建筑物25。 工程厅26。 Graziano Plaza 27。 库存馆Siebel计算机科学中心10。肯尼健身房附件11。数字计算机实验室(DCL)12。Grainger工程库13。Grainger加载码头14。塔尔伯特实验室15。机械工程实验室(MEL)16。校园教学设施(CIF)17。材料科学与工程大楼(MSEB)18。运输大楼19。Everitt实验室20。Sidney Lu机械工程大楼(MEB)21。Loomis实验室22。材料研究实验室(MRL)23。Illini Union 24。 自然历史建筑物25。 工程厅26。 Graziano Plaza 27。 库存馆Illini Union 24。自然历史建筑物25。工程厅26。Graziano Plaza 27。库存馆
1 Wageningen University and Research,人工智能,邮政信箱16,Wageningen,6700 AA,荷兰。皮埃尔·维亚拉(Pierre Viala),蒙彼利埃(Montpellier),34000,法国17莱布尼兹农业景观研究中心,模拟和数据科学,埃伯斯瓦尔德·斯特劳斯(EberswalderStra笔环境研究,计算水系统系,珀索斯特拉赛15号,莱比锡,04318,德国20欧盟委员会联合研究中心,粮食安全部门,E.Fermi 2749,ISPRA,VA I-21027,意大利2 Technical University of Munich, Chair of Data Science in Earth Observation, Arcisstraße 21, Munich, 80333, Germany 3 Purdue University, Department of Agronomy, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, United States 4 Ankara University, Faculty Of Agriculture Engineering, Dögol Caddesi 06100 Tando˘gan, Ankara, 6110,土耳其5马里兰大学,地理科学系,7251 Preinkert Drive,Collega Park,MD 20742,美国6 NASA戈达德太空研究所,GISS气候影响小组,邮件代码611,纽约,纽约10025,纽约,10025 Vrije Universiteit Amsterdam,环境研究研究所,DE BOELELAAN 1105,阿姆斯特丹,1081 HV,荷兰9 Potsdam气候影响研究所,气候弹性研究部,PO Box 60 12 03,Potsdam,Potsdam,4412,德国10,Manitoba University of Manitoba University of Manitoba,Winn winn winn winn 5V6, Canada 11 Universitat de València, Image Processing Laboratory, C/ Catedràtic Agustín Escardino Benlloch, 9, València, 46980, Spain 12 Seidor Consulting, C/Provençals 44, Barcelona, 08019, Spain 13 International Crops Research Institute for the Semi-Arid Tropics, West and Central Africa Region Hub, PO Box 320,巴马科,马里14国际热带农业研究所,自然资源管理,邮政信箱30677,内罗毕,00100,00100,肯尼亚15联邦科学与工业研究组织(CSIRO),农业和食品,147 Underwood Wood Wood,珀斯,澳大利亚6014,澳大利亚16号,澳大利亚16号国家研究所,国家研究所,国家研究所农业研究所,农业和环境。
daad gssp- stipendienausschreibung顾问:博士教授。Wolfgang Nowak Rer博士。 nat。 Jochen Seidel,Apl。 教授Sergey Oladyshkin研究小组 /系:水文系统的随机模拟和安全研究主席(LS 3)建模液压和环境系统建模研究所(IWS)和Stuttgart模拟技术中心(SC Simtech技术)(SC SIMTECH)实时时间范围的地理位置,以实现杂型降雨 /介绍性估算的构建效率:以及为极端降雨事件设计和计划。 降水在时空上是高度变化的。 其准确的估计,尤其是对于激烈的当地事件,仍然是一个科学挑战。 天气雷达可提供高分辨率的空间和时间降雨估计,但它们的测量值可能会遭受多种错误来源的影响,例如 由于强烈的降雨而导致地面或衰减的测量高度。 一种改善降雨量化的一种相当新的方法是使用所谓的机会主义传感器(OS),例如商业微波链路(CML)或个人天气站(PWS),即 旨在提供高质量降雨数据或任何降雨数据的传感器。 Bárdossy等人已经显示了OS传感器改善降雨估计的潜力。 (2021)和Graf等。 (2021)。 但是,这些研究使用了每天或每小时的降雨数据。 具有大量的0mm降雨测量。Wolfgang Nowak Rer博士。nat。Jochen Seidel,Apl。教授Sergey Oladyshkin研究小组 /系:水文系统的随机模拟和安全研究主席(LS 3)建模液压和环境系统建模研究所(IWS)和Stuttgart模拟技术中心(SC Simtech技术)(SC SIMTECH)实时时间范围的地理位置,以实现杂型降雨 /介绍性估算的构建效率:以及为极端降雨事件设计和计划。降水在时空上是高度变化的。其准确的估计,尤其是对于激烈的当地事件,仍然是一个科学挑战。天气雷达可提供高分辨率的空间和时间降雨估计,但它们的测量值可能会遭受多种错误来源的影响,例如由于强烈的降雨而导致地面或衰减的测量高度。一种改善降雨量化的一种相当新的方法是使用所谓的机会主义传感器(OS),例如商业微波链路(CML)或个人天气站(PWS),即旨在提供高质量降雨数据或任何降雨数据的传感器。Bárdossy等人已经显示了OS传感器改善降雨估计的潜力。(2021)和Graf等。(2021)。但是,这些研究使用了每天或每小时的降雨数据。具有大量的0mm降雨测量。在某些情况下,例如在城市地区的洪水洪水小流域中的洪水事件,这种时间分辨率不够,因为这些过程可能会在次小时的时间尺度上进行。因此,需要通过次数时间分辨率来改善和评估OS数据的性能。研究目标:一个研究目标是开发高级分辨率的插值方法。随着时间分辨率的增加,必须将降雨场的空间估计视为时空问题,在这些问题上,必须通过考虑以前的时间步骤来考虑降雨场的对流。这需要用于变量图估计的新方法,因为高时间分辨率降雨数据集通常是“零膨胀”,即此外,需要研究诸如“干燥漂移”之类的现象(Schleiss等,2014)或降水场各向异性的影响。将在极端事件期间与OS一起评估天气雷达数据,以回答良好的OS降雨数据如何捕获此类事件的问题。为此,需要与量规调整的天气雷达数据产品进行比较。德国气象服务DWD需要DWD。在这些雷达产品中应很好地捕获仪表位置的这种量规调整的雷达产物的降雨最大值。但是,将雷达极端与OS附近的OS的比较,距离