摘要:自体脂肪转移在治疗纤维化皮肤疾病,逆转疤痕和僵硬以及改善生活质量方面显示出希望。这些移植物中的脂肪衍生的干细胞(ADSC)被认为对这种作用至关重要,尤其是它们的分泌因素,尽管特定机制尚不清楚。本研究研究了体外纤维化,炎症和低氧性调节后ADSC的转录组变化。高通量基因表达测定在暴露于IL1-β,TGF-β1和缺氧的ADSC上以及胎儿牛血清(FBS)的培养基中。流式细胞术表征了ADSC。RNA-SEQ分析揭示了条件之间不同的基因表达模式。 FBS上调的途径与细胞周期,复制,伤口愈合和骨化有关。 IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。 TGF-β1治疗上调伤口愈合和肌肉组织发育途径。 缺氧导致线粒体和细胞活性的下调。RNA-SEQ分析揭示了条件之间不同的基因表达模式。FBS上调的途径与细胞周期,复制,伤口愈合和骨化有关。IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。 TGF-β1治疗上调伤口愈合和肌肉组织发育途径。 缺氧导致线粒体和细胞活性的下调。IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。TGF-β1治疗上调伤口愈合和肌肉组织发育途径。缺氧导致线粒体和细胞活性的下调。
低氧信号传导在生理和病理状况中起重要作用。心脏组织中的缺氧会根据暴露于低氧状态的持续时间而产生不同的后果。虽然急性低氧暴露会导致心脏组织的可逆适应性,但慢性缺氧加剧心脏功能障碍,导致组织破坏。细胞外囊泡(EV)是小膜囊泡,充当细胞间通信的介体。evs由不同的细胞类型分泌,由口腔衍生的间充质干细胞(MSC)(包括人牙龈MSC(HGMSC))产生的细胞类型具有促血管生成和抗炎性弹药作用,并在组织再生中显示出治疗作用。本工作的目的是通过HGMSCS产生的EV的潜在保护性和再生作用,在缺氧条件的HL-1心肌细胞的体外模型中,通过以下表达伴有氧化,氧化应激,血管生成,血管生成,生存和apptoptotic标记的表达分析。 IL6,NRF2,CASP-3,BAX和VEGF。结果表明,HGMSCS衍生的EV施加了暴露于前后缺氧条件的HL-1心肌细胞的保护HL-1心肌细胞。此外,CASP3和BAX表达的调节表明,EV降低了凋亡。进行了从HGMSC衍生的电动汽车中的microRNA分析,以评估所提出的标记的表观遗传调节。The following microRNAs: hsa-miR-138-5p, hsa-miR-17- 5p, hsa-miR-18a-5p, hsa-miR-21-5p, hsa-miR-324-5p, hsa-miR-133a-3p, hsa- miR-150-5p, hsa-miR-199a-5p, hsa-miR-128-3p and HSA-MIR-221-3P可以通过确定其调节
背景:间充质干细胞(MSC)具有巨大的潜力,因为疗法可以再生组织损伤并促进组织稳态。在低氧浓度中MSC的预处理已显示出影响这些细胞的治疗潜力。这项研究旨在比较在缺氧和正态氧中培养的MSC的营养因子的特征和分泌。方法:通过Explant方法从沃顿商人脐带(UC)组织的果冻中分离出MSC,并以流动性细胞仪为特征。在24小时的COCL 2诱导的低氧培养物之后,分别通过锥虫蓝排除试验和甲基噻唑基四唑(MTT)测定法分析了MSC的生存力和代谢活性。使用酶 - 连接的免疫吸附测定法(ELISA)方法,在条件培养基中评估了肝细胞生长因子(HGF)和血管内皮生长因子(VEGF)的分泌。结果:流式细胞仪分析表明,> 99%的MSC细胞群体为CD73和CD90阳性,CD105阳性为阳性。虽然MSC的细胞活力不受低氧培养条件的影响,但在低氧条件下,这些细胞的代谢活性率降低。与代谢活性降低相一致,低氧人类UC衍生的MSC产生的HGF低于常氧化物。与常氧MSC相比,在条件培养基中,缺氧预处理的MSC分泌更高的VEGF水平(P <0.05)。结论:缺氧降低了与HGF和VEGF分泌的调节有关的MSC的代谢活性。建议缺氧也可能影响MSC细胞的治疗能力。
由于治疗性体温过低仅是针对新生儿脑病的部分保护,因此迫切需要安全有效的辅助疗法。褪黑激素和红细胞生成素表现为安全有效的神经保护疗法。我们假设褪黑激素和红细胞生成素单独增强12-h-体温过低(双疗法)和体温过低þ褪黑激素ÞERYTHRO-poietin(三重疗法)导致最佳脑保护。Following carotid artery occlusion and hypoxia, 49 male piglets ( < 48 h old) were randomized to: (i) hypothermia þ vehicle ( n ¼ 12), (ii) hypothermia þ melatonin (20 mg/kg over 2 h) ( n ¼ 12), (iii) hypo- thermia þ erythropoietin (3000 U/kg bolus) ( n ¼ 13)或(iv)三重疗法(n¼12)。褪黑激素或媒介物。缺氧 - 异常严重程度相似。缺氧 - 异常(15-30 mg/L)和促红细胞生成素给药后30分钟(Max-imum浓度10 000 mU/mL),在缺氧 - 异常(15-30 mg/L)和30分钟内达到治疗水平。与体温过低的媒介物相比,我们观察到振幅综合的EEG恢复速度从25到30小时,低温褪黑激素(P¼0.02)和低温促红细胞生成素(P¼0.033)(p¼0.033),并使用Triple Pairmipation(P¼0.042)。磁共振光谱乳酸/ N-乙酰天冬氨酸峰值比在体内 - MIAÞ褪黑激素(p¼0.012)和三重治疗(P¼0.032)时在66 h时较低。总体而言,褪黑激素和促红细胞生成素是安全有效的辅助疗法。三重疗法对双重疗法没有增加的好处。与低温褪黑激素,末端脱氧核苷酸转移 - ASE介导的三磷酸脱氧尿苷三磷酸脱氧尿苷 - 末端结实的阳性细胞在感觉运动皮层中降低脑室周围白质(p¼0.039)。末端脱氧核苷酸转移酶介导的三磷酸脱氧尿苷型脱氧尿苷末端的标记阳性细胞伴有低温促红细胞生成素,但少突胶质细胞转录因子2增加了8个大脑区域(p <0.05)的5个标记阳性细胞。低温mel褪黑激素双重疗法导致振幅综合的恢复,乳酸/N-乙酰基天冬氨酸的改善以及末端脱氧核苷酸转移酶介导的脱氧甲甲基尿苷的脱氧甲甲基甲基甲基甲基甲基甲基甲基甲基镍含量细胞的脱氧基因甲基甲基化型细胞的脱氧基因甲基脱氧型细胞的升高和减少。体温过低þ红细胞生成素双重疗法与脑电图恢复相关,最有效地促进少突胶质细胞存活。褪黑激素和促红细胞生成素感染的细胞死亡和少突胶质细胞的生存方式有所不同,反映了可能在长期研究中变得更加可见的独特神经保护机制。用早期的褪黑激素和后来的促红细胞生成(在体温过低之后)的疗法破坏了治疗方法,可以提供更好的保护;每种疗法都有互补作用,在缺氧 - 异常后神经毒性级联反应期间可能至关重要。
摘要:背景:Mito-metformin10 (MM10) 是通过将三苯基膦阳离子部分通过 10 碳脂肪族侧链连接到二甲双胍而合成的,是一种靶向线粒体的二甲双胍类似物,最近被证明可以改变胰腺导管腺癌中的线粒体功能和增殖。在这里,我们假设这种化合物可以降低前列腺癌细胞的耗氧率 (OCR),增加线粒体 ROS 水平,缓解肿瘤缺氧,并使肿瘤放射敏感。方法:在体外通过 EPR (9 GHz) 评估 PC-3 和 DU-145 前列腺癌细胞中的 OCR 和线粒体超氧化物生成。在 MM10 暴露之前和之后评估还原和氧化谷胱甘肽。在 PC-3 肿瘤模型中使用 1 GHz EPR 血氧仪测量体内肿瘤氧合情况。在最大复氧时对肿瘤进行照射。结果:24 小时暴露于 MM10 显著降低了 PC-3 和 DU-145 癌细胞的 OCR。在 PC-3 中观察到线粒体超氧化物水平增加,但在 DU-145 癌细胞中没有增加,这一观察结果与两种癌细胞系中谷胱甘肽水平的差异一致。体内,在开始治疗后 48 和 72 小时,PC-3 模型(每日注射 2 mg/kg MM10)中的肿瘤氧合显著增加。尽管对肿瘤缺氧有显著影响,但与单独照射相比,MM10 与照射相结合并没有增加肿瘤生长延迟。结论:MM10 改变了前列腺癌细胞的 OCR。MM10 对超氧化物水平的影响取决于细胞系的抗氧化能力。在体内,MM10 减轻了肿瘤缺氧,但没有影响对放射的反应。
缺氧诱导因子-1 A(HIF-1 A)在促进细胞对缺氧的适应中起关键作用,深刻影响了免疫血管微环境(IVM)和免疫疗法结果。HIF -1 A介导的肿瘤缺氧驱动血管生成,免疫抑制和细胞外基质重塑,创造了一种环境,可促进肿瘤进展和对免疫疗法的抗性。HIF-1 A调节关键途径,包括血管内皮生长因子的表达和免疫检查点上调,从而导致肿瘤 - 纤维化淋巴细胞功能障碍以及募集免疫抑制细胞(如调节性T细胞和髓样细胞)和髓样细胞的抑制细胞。这些改变降低了检查点抑制剂和其他免疫疗法的效率。最近的研究强调了针对HIF-1 A的治疗策略,例如使用药理学抑制剂,基因编辑技术和进行缺氧的治疗方法,这在增强对免疫疗法的反应方面表现出了希望。本评论探讨了IVM中HIF-1 A的作用的分子机制,其对免疫疗法抗性的影响以及潜在的干预措施,强调了需要创新方法来规避低氧驱动的免疫抑制在癌症治疗中。
引言人们早已认识到肿瘤具有免疫抑制作用,这解释了为什么肿瘤和肿瘤反应性免疫细胞可以在同一癌症患者体内和平共处(Hellstrom 悖论),也解释了为什么只有少数癌症免疫治疗患者能观察到持久反应(1、2)。受这一悖论的启发,我们小组的研究致力于解决这一重大问题,从而发现了一种基本的生化免疫抑制机制,该机制可保护重要器官免受抗病原体免疫反应的附带损害(3),并保护癌组织免受抗肿瘤免疫反应的损害(4)。在本综述中,我们总结了我们对缺氧/A2-腺苷酸免疫抑制的研究,这些研究已被其他几个小组证实和扩展,从而促成了目前对癌症抗缺氧/A2-腺苷酸免疫疗法的临床试验。这些试验通过防止抑制内源性发育或免疫疗法激活的肿瘤反应性免疫细胞,显示出了良好的结果(5、6)。为了进一步改善癌症免疫治疗,我们强调了氧合剂和呼吸性高氧相结合的优势
1。新的靶向治疗方法有效地杀死没有副作用的癌细胞(例如,使用肿瘤微环境(例如缺氧,酸性pH)或使用肿瘤特异性表面分子或免疫疗法,例如CAR T细胞,新抗原基于新抗原的治疗治疗疫苗(例如,使用肿瘤微环境识别新的靶标 / /))。
摘要:肿瘤微环境(TME)是一个复杂而动态的实体,包括基质细胞,免疫细胞,血管和细胞外基质,与癌症的发生和发展密切相关。利用肿瘤的共同特征,例如酸性环境,酶和缺氧,研究人员开发了一种有希望的癌症治疗策略,称为纳米载的药物的反应迅速释放,专门针对肿瘤组织或细胞。在这篇全面的综述中,我们提供了TME响应性纳米植物的当前基本原理和最先进的智能策略的深入概述,其中包括酸性pH,高GSH水平,高级腺苷三磷酸腺苷,过表达的酶,低氧和还原环境。此外,我们还展示了TME响应性纳米颗粒的最新进步。总而言之,我们彻底研究了TME响应性纳米药物的直接挑战和前景,并期望这些有针对性的纳米成型的进步将实现TME的利用,克服或调节,最终导致更有效的有效癌症治疗。关键词:肿瘤微环境,刺激反应,药物输送,癌症治疗,智能生物医学
