许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
光学多层薄膜结构是在许多应用中广泛使用的最重要的光子结构之一,包括结构颜色1,2,过滤器3,吸收剂4,分布式Bragg反射剂5,6(DBR),Fabry-Pérot7(fp)7(fp)储存器,Photovoltaic 8和photovoltaic 8和辐射式冷却9--其他9- 11- 11- 11-11,等等。逆设计旨在确定最佳的材料布置并获得厚度组合以实现用户呈现的光学目标,这对于启用上述许多应用程序至关重要。术语中,主流逆设计方法有两种类型:1)基于优化的方法12-16,它们依靠数值模拟和迭代搜索来微调设计和目标的光学响应之间的差异; 2)基于深度学习的方法17-23,该方法使用神经网络从目标响应的空间中学习了对光学空间的一般映射
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
型号:RESOLVE 类型:拖曳式,对称偶极配置,在标称测量高度 30 米处运行。400 Hz、1800 Hz、8200 Hz、40,000 Hz 和 140,000 Hz 共面线圈对的线圈间距为 7.9 米;3300 Hz 同轴线圈对的线圈间距为 9.0 米。EM 鸟被拖曳在一条长 28.7 米(94 英尺)的电缆上。由于飞行过程中鸟和电缆受到空气升力和风阻,从雷达高度计数据中减去一个略短的值 27.7 米(91 英尺),以得出近似的鸟高。这些结果与测量高度和速度下的激光高度计值一致。线圈方向/频率:方向标称实际共面400 Hz 391 Hz共面1800 Hz 1801 Hz同轴3300 Hz 3326 Hz共面8200 Hz 8162 Hz共面40,000 Hz 39,130 Hz共面140,000 Hz 132,640 Hz记录通道:6个同相通道6个正交通道2个监测通道
•±4,0 Hz/s在0,25 s的周期内,•±2,0 Hz/s在0,5 s的周期内,•±1,5 Hz/s在1 s的周期内,•±1,25 hz/s在2 s期间;±1,25 hz/s;
三角波的频率小于3.5 Hz,并且在深度睡眠中发生。当物理世界的意识降低时,其幅度会增加。theta波的频率为3.5 Hz至7.5 Hz,被归类为“缓慢”活性。theta波很强。alpha波的频率在7.5 Hz和12Hz之间。当Alpha占主导地位时,大多数人会感到轻松而镇定。alpha似乎将意识桥接到潜意识上。β波的宽频率范围在12 Hz至30 Hz之间。它们分为低β(12 Hz〜17 Hz)和高β(17Hz〜30 Hz)。beta波是那些机敏或焦虑的人中的主要节奏。是,当我们在分析问题解决,判断,决策,处理有关世界的信息中倾听和思考时,大脑中的大部分大脑都在
背景:疱疹带状疱疹(Hz)是一种疼痛的囊泡皮疹,当感觉神经节中的水痘带状疱疹病毒感染时发生。Hz的发病率和严重性及其并发症随着年龄的增长而增加,50岁以后的增长显着增加。此外,糖尿病已被发现是严重,持续的后骨神经痛的危险因素。方法:这项描述性横断面基于医疗保健的研究是在沙特阿拉伯东部的Al-Ahsa市进行的。研究人群包括在初级或继发医疗保健环境中访问门诊(门诊)的DM患者。便利样本包括224名参与者。使用了经过验证的封闭式访谈问卷来收集数据。通过SPSS计划28分析了收集的数据,并使用了描述性和推论统计信息。结果:该研究包括224名参与者,其中一半以上(54.5%)是女性。样本的平均年龄为61.1±8岁。大多数参与者(97.8%)已婚,而29.0%的参与者具有中学教育水平。超过一半的参与者(56.7%)听说过Hz。只有6.7%的人被诊断出患有Hz,而23.7%的人知道被诊断为Hz的人。此外,已经为Hz接种了18.8%的人。大多数患者(80.8%)认为医疗保健提供者是其HZ知识的主要来源,其次是朋友/亲戚(37.9%)。结论:结果表明,Hz的疫苗接种率低和意识较低。超过一半的参与者意识到Hz(62.1%),分别对Hz(55.8%)具有积极的态度。对Hz的意识与更高的教育水平,高收入,糖尿病时间短,听说过Hz,被诊断出患有HZ,认识被诊断为Hz的人并在糖尿病患者中对HZ疫苗接种疫苗。该研究建议应通过各种媒体提供简单语言的教育,以提高社区对HZ及其疫苗的认识。此外,医疗保健提供者应促进并建议DM患者HZ疫苗接种。关键词:DM,带状疱疹,水Vericella带状疱疹,疫苗,意识,态度,沙特阿拉伯。
测量声音的一种方法是振幅,它表示分贝(db)中的强度。也可以将声音作为频率测量,用Hz或KHz表示。声音频率是指振动的数量(或周期)每秒都在赫兹(Hz)中测量。健康的人耳通常可以感知到20 Hz至20,000 Hz范围内的声音频率,或者简称为20 kHz。1对于视角,低音低音介于20 Hz至250 Hz之间,250 Hz和4 kHz之间的人类语音以及4 kHz至20 kHz的高音声音)。声音频率高于20 kHz,通常被认为是超声波,通常超出了人类的感知。
目的刺激初级躯体感觉皮层 (S1) 已成功在人类和动物身上唤起人工躯体感觉,但对于产生稳健躯体感觉感知所需的最佳刺激参数仍知之甚少。在本研究中,作者研究了频率作为闭环脑机接口 (BCI) 系统中人工躯体感觉的可调刺激参数。方法三名癫痫患者的 S1 手部区域上装有硬膜下微型皮层电图网格,要求他们比较不同刺激频率引起的感知。幅度、脉冲宽度和持续时间在所有试验中保持不变。在每次试验中,受试者体验 2 次刺激,并报告他们认为哪个刺激频率较高。我们使用了两种范例:首先,比较50 Hz 和 100 Hz 以确定比较频率的效用,然后伪随机比较 2、5、10、20、50 或 100 Hz。结果随着刺激频率的幅度增加,受试者描述的感觉“更强烈”或“更快”。总体而言,参与者在比较 50 Hz 和 100 Hz 的刺激时达到了 98.0% 的准确率。在第二种范例中,相应的总体准确率是 73.3%。如果两个测试频率都小于或等于 10 Hz,准确率是 41.7%,当一个频率大于 10 Hz 时,准确率上升到 79.4%(p = 0.01)。当两个刺激频率均为 20 Hz 或更低时,准确率是 40.7%,而当一个频率大于 20 Hz 时,准确率是 91.7%(p < 0.001)。在 50 Hz 为较高刺激频率的试验中,准确率为 85%。因此,检测的下限出现在 20 Hz,当测试较低频率时,准确率显著下降。在测试 10 Hz 和 20 Hz 的试验中,准确率为 16.7%,而测试 20 Hz 和 50 Hz 的试验中准确率为 85.7% (p < 0.05)。当频率差异大于或等于 30 Hz 时,准确率高于偶然性。结论大于 20 Hz 的频率可用作可调参数以引起可区分的感知。这些发现可能有助于告知未来 BCI 系统的设置和可实现的自由度。
应答器测试规格 测试装置发射机 输出频率 1030 MHz / ±10 KHz 输出功率 –20 至 –100 / ±1 dBm (DC) 0 至 -100 dBm / ±1 dBm (天线) 询问 PRF 直接连接 SIF 450 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 天线连接 SIF 235 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 测试装置接收机 测量范围 1086.5 至 1093.5 MHz 测量精度 ±200 KHz 功率测量范围 47 至 64 dBm 测量精度 ±2 dB (DC) ±2 dB (天线) 灵敏度测量范围 -45 至 -87 dBm (DC) -49至 -81 dBm (天线) 测量精度 ±2 dB (DC) ±3 dB (天线) 应答效率测量范围 0 至 100%