图 1 显示了 n 沟道结型 FET 的原理图结构。如果在沟道上施加电压,使漏极相对于源极为正,如图 lb 所示,电子会通过沟道从源极流到漏极,从而产生漏极电流。漏极电流的大小由沟道的电导率和漏极-源极电压决定。当在栅极上施加负电压时,栅极将反向偏置。在栅极和沟道之间的 pn 结周围会形成耗尽层,如图 IC 所示。因此,在漏极-源极电压恒定的情况下,漏极电流可由栅极-源极电压改变。如果栅极电压足够负,耗尽层将延伸至整个通道,漏极电流变得非常小;然后通道被称为“夹断”。因此,JFET 被称为耗尽或“常开”器件。
标准数据库项目的目标是开发和维护与美国造船、修理和相关行业相关的标准汇编(来自国际、国家、军事和监管机构)。当前系列中的第一个汇编被报告为 NSRP 0361,并取代了仅以印刷形式提供的旧数据库 (NSRP 0088)。它具有标准标题、编号和发布机构,并通过船舶工作分解结构 (SWBS) 编号进行交叉引用,包含约 10,400 个标题。它仍然在一张 3.5 英寸软盘上可用,但已被当前报告取代。第二份概要是 NSRP 0456,旨在作为 NSRP 0361 的后续,但时间安排使得 0456 本质上是一个包含 17,000 个标准的新数据库索引。它仍然在两 (2) 张 3.5 英寸软盘上可用,但也已被当前报告取代
地下扩孔作业期间天井钻孔机的灾难性故障 A. James ...................................................................................................................................................... 175 德哈维兰彗星 I PA Withey 的疲劳失效 ...................................................................................................................................................... 185 钛 6A1-4V 手术工具的低周疲劳 H. Velasquez、M. Smith、J. Foyos、F. Fisher。 OS Es-Said 和 G. Sines ........................................................................... 193 螺纹旋转轴的失效分析和实验应力分析 RB Tait ............................................................................................................................................................. 199 低压蒸汽轮机叶片失效调查 NK Mukhopadhyay、S. Ghosh Chowdhury、G. Das、I Chattoraj、SK Das 和 DK Bhattacharya ............................................................................................................. 211 脉冲管线的振动疲劳失效 KR Al-Asmi 和 AC Seibi ............................................................................................................................. 225 蒸汽轮机机械控制系统的故障 JH Bulloch 和 AG Callagy ............................................................................................................................. 235 液压缸压盖固定螺栓的疲劳失效 C. Tao、N. Xi、H. Yan 和 Y. Zhang ............................................................................................................. 241 车辆轮轴失效分析 J. Vogwell ........................................................................................................................................... 247 腿部推举机的疲劳失效分析 PJVernon 和 TJ Mackin ...................................................................................................................................... 255 航空发动机橡胶燃油管失效分析 G. Fu ............................................................................................................................................................. 267
地下扩孔作业期间天井钻机发生灾难性故障 A. James ................................................................................................................................................. 175 德哈维兰彗星 I P.A. 的疲劳失效Withey ............................................................................................................................................. 185 钛 6A1-4V 手术工具的低周疲劳 H. Velasquez、M. Smith、J. Foyos、F. Fisher。O.S.Es-Said 和 G. Sines ........................................... 193 螺纹旋转轴的故障分析和实验应力分析 R.B.Tait ................................................................................................................................................. 199 低压蒸汽涡轮叶片故障调查 N.K.Mukhopadhyay, S. Ghosh Chowdhury, G. Das, I Chattoraj, S.K.Das 和 D.K.Bhattacharya ................................................................................................................................ 211 脉冲管线的振动引起的疲劳失效 K.R.Al-Asmi 和 A.C. Seibi .................................................................................................................. 225 蒸汽涡轮机机械控制系统故障 J.H.Bulloch 和 A.G. Callagy ...................................................................................................................... 235 液压缸压盖固定螺栓疲劳失效 C. Tao, N. Xi, H. Yan 和 Y. Zhang ...................................................................................................................... 241 车辆轮轴失效分析 J. Vogwell ............................................................................................................................................. 247 腿部推举机疲劳失效分析 P.J.Vernon 和 T.J Mackin ............................................................................................................................. 255 航空发动机橡胶燃油管失效分析 G. Fu ............................................................................................................................................. 267
摘要。心力衰竭和骨骼肌弱是糖基因论11型的主要临床特征,这是由酸A-葡萄糖苷酶缺乏引起的溶酶体储存障碍。在我们的研究中,我们已经在大鼠心脏灌注灌注系统中调查了酸A-葡萄糖苷酶是否可以从血管系统中吸收到心脏病中。将大鼠心脏用含有含磷酸盐的甘露糖含有甘露糖的含酸A-葡萄糖苷酶灌注,从Bovine睾丸纯化时,获得了3至4倍的酶活性。灌注含有含有甘露糖的6-磷酸盐识别标记物的人胎盘酸A-葡萄糖酶没有这种作用。通过免疫印迹证明了牛睾丸酸A-葡萄糖苷酶在心脏组织中的存在。免疫细胞化学为摄取心肌细胞溶酶体的外源性酶提供了证据。讨论了这些发现与I1型糖原病中酶治疗的相关性。(Pe-Diatr Res 28:344-347,1990)
摘要。使用R波之间的SD(R-R间隔),R-R Inter-Val直方图,光谱分析和POINCARC POINCARC绘图,使用24-H时期的RAMB lave posential R Wife 在12例先天性中央中央次数不足综合征(CCHS)以及年龄和性别匹配的对照中评估了心率变异性。 CCH患者的平均心率为103.3 F 17.7 SD,对照组为98.8 F 21.6 SD(P> 0.5,NS)。 R-R间隔的SD分析在两组中都显示出相似的结果(CCHS 102.2 F 36.0 ms与对照126.1 F 43.3 ms; P> 0.1,NS)。 光谱分析表明,对于在安静的睡眠和清醒中采样的类似时期,低频带与高频频段光谱功率的比率增加了,在睡眠期间,有12例CCH患者中有11例增加了,而这些比率的比率均在所有对照中始终降低。 在清醒期间,在CCH和对照组的患者中,低频带与高频带光谱功率的比率相似。 繁殖图显示,CCHS患者的心率较慢(XZ = 24.0; p <0.000001)显着降低了Beat-Beat变化。 CCHS中点的点散射很容易与对照区分开。 所有CCHS患者均通过一项或多项措施均表现出干扰的变异性。 瞬间心率变异性的变化表明,除了通气控制损失外,CCHS患者还表现出自主神经系统心脏控制的功能障碍。 (Pediafr Res 31:291-296,1992)在12例先天性中央中央次数不足综合征(CCHS)以及年龄和性别匹配的对照中评估了心率变异性。CCH患者的平均心率为103.3 F 17.7 SD,对照组为98.8 F 21.6 SD(P> 0.5,NS)。R-R间隔的SD分析在两组中都显示出相似的结果(CCHS 102.2 F 36.0 ms与对照126.1 F 43.3 ms; P> 0.1,NS)。光谱分析表明,对于在安静的睡眠和清醒中采样的类似时期,低频带与高频频段光谱功率的比率增加了,在睡眠期间,有12例CCH患者中有11例增加了,而这些比率的比率均在所有对照中始终降低。在清醒期间,在CCH和对照组的患者中,低频带与高频带光谱功率的比率相似。繁殖图显示,CCHS患者的心率较慢(XZ = 24.0; p <0.000001)显着降低了Beat-Beat变化。CCHS中点的点散射很容易与对照区分开。所有CCHS患者均通过一项或多项措施均表现出干扰的变异性。瞬间心率变异性的变化表明,除了通气控制损失外,CCHS患者还表现出自主神经系统心脏控制的功能障碍。(Pediafr Res 31:291-296,1992)
m l〜flil r〜fttu1t'l9 lll〜..mnu luw \'l'l'l nn fl nn fl n11'111tl lrlfl'i1〜“ l'1l〜1 aft fltl 1m〜uil r.ftu1mjt.l r.ftu1mjt.l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'l'19ll”
(E) I1=0.4-1 英寸 (E) I1=0.18-1 英寸 (DS) I1=0.4-1 英寸 (DS) (E) I1=0.4-1 英寸 (DS) (E) I1=0.4-1 英寸 (ME) (E) I1=0.4-1 英寸 (E) t1=3-18 秒 t=k/l2 (E) t1=3-18 秒 (DS) t1=3-12 秒 t=k/l2 (DS) (E) t1=3-18 秒 t=k/l2 (DS) (E) t1=3-144 秒 t=k/l2 (ME) (E) t1=3-144 秒 t=k/l2 (E) I2=0.6-10 英寸 (E) I2=0.6-10 英寸 (DS) I2=1-10 英寸(DS) (E) I2=0.6-10 英寸 (DS) (E) I2=0.6-10 英寸 (ME) (E) I2=0.6-10 英寸 (E) t2=0.05-0.5 秒 t=k/l2 或 t=k (E) t2=0.05-0.5 秒 t=k/l2 或 t=k (DS) t2=0.1-0.25 秒 t=k/l2 (DS) (E) t2=0.1-0.8 秒 t=k/l2 或 t=k (DS) (E) t2=0.1-0.8 秒 t=k/l2 或 t=k (ME) (E) t2=0.05-0.8 秒 t=k/l2 或 t=k (E) I3=1.5-12 英寸 (E) I3=1.5-12 英寸 (DS) I3=1-10 英寸 (DS) (E)I3=1.5-12 英寸 (DS) (E) I3=1.5-15 英寸 (ME) (E) I3=1,5-15 英寸 t3=瞬时 t=k t3=瞬时 t=k t3=瞬时 t=k t3=瞬时 t=k t3=瞬时 t=k t3=瞬时 t=k (E) I4=0.2-1 英寸 (E) I4=0.2-1 英寸 – – (DS) (E) I4=0.2-1 英寸 (ME) (E) I4=0.2-1 英寸
E-2C 组 I1 导航升级战术软件版本 N9MF'HDDD 的操作测试和评估。当 VAW-125 登上 USS GEORGE WASHINGTON (CVN 73) 进行 COMPTUEX 时,该软件的飞行评估开始。VAW-125 花费了超过 30 小时的飞行时间在操作环境中评估和记录此版本的软件问题。广泛的评估过程涉及许多评估,包括:数据链路空中控制修订、改进的 Link 4A 到双向 CEM F-14B、战术空中拦截控制期间新“靶心”功能的评估、Link 16 的 4 位 TN/IFF 挂钩功能、重复模式 I1 警报问题以及 EMDU 负载 N9005DD 的验证。VAW-125 的评估为圣地亚哥太空与海军作战系统中心 (SSC) 提供了具体而广泛的反馈,有助于在 2002 年发布可供所有 E-2C 组 I1 和导航升级中队使用的改进版软件。
