摘要:本论文介绍了具有RISC-V处理器核心系统的I3C控制器外围设备的RTL设计和实现。论文描述了具有其主要功能的I3C协议,包括从免费提供的规范中与其前身I2C的向后兼容。从特定方面,已经选择了协议的支持特征,并编写了系统外围设计。在VHDL中实施了外围的单个块,并使用RISC-V系统进行了测试。为了验证通信,创建了I3C目标代理,充当连接到I3C总线的目标设备。为了进行定时验证,控制器是为FPGA进行了合成并实现的。生成的网表用于外围的门水平模拟。关键字:VHDL,I3C,控制器,仅SDR,RISC-V,AHB,FPGA
海得拉巴国家动物生物技术研究所 (NIAB) 致力于通过创新科学技术开发、转化研究和培养动物生物技术领域的生物创业精神,发展可持续且具有全球竞争力的畜牧业经济。主要重点领域包括 i) 研究用于改善健康和生产力的生物技术前沿领域;ii) 生产动物生物反应器,以加强印度在制药、疫苗和酶生产领域的全球参与者地位;iii) 利用本土和全球资源开发高产牲畜和家禽;iv) 制定保护本土牲畜和家禽的战略;v) 建立目标基因的基因库
这项工作的重点是用于Cubesat应用的PC/104电子板的开发。特别关注板载计算机模块(OBC)。基于ARM技术的通用OBC由支持各种接口的STM32L4微控制器控制。它的其他功能包括强大的电源管理,单独的外围隔热材料,三重冗余闪光灯和F-RAM内存,两个CAN BUS通信器,内置监控 - 不温度和广泛的有用货物行业。在伽马辐射的来源下,进行了靶向辐射测试。还开发了三个板,包括OBC的双重版本,通用PC/104模块和一个Flatsat测试平台。所有这些董事会都是根据KICAD环境中开源原则推动的。这项工作通过引入用于任务管理系统的测试系统和压缩算法的测试系统的硬件工资来为Vivionspace Technologies VOV104项目做出了贡献。
摘要。背景/目的:三阴性乳腺癌 (TNBC) 是一种乳腺癌亚型,具有高度侵袭性,预后不良,对治疗的反应不同。本研究调查了伏立诺他和吲哚-3-甲醇 (I3C) 在调节 TNBC 中通常不表达的关键受体方面的作用。材料和方法:使用实时 PCR、免疫染色和蛋白质印迹,在四种不同的 TNBC 细胞类型中检查了雌激素受体 α (ER)、孕激素受体 (PR) 和人表皮生长因子受体 2 (HER2) 受体的重新表达。结果:使用伏立诺他和 I3C 在三种亚型中重新表达 ERα。还检测到伏立诺他重新表达 PR。伏立诺他和 I3C 均未导致 HER2 受体重新表达。还注意到生长和对他莫昔芬的敏感性显着下降。结论:本研究结果表明,伏立诺他和 I3C 通过多种途径调节某些 TNBC 亚型中关键受体的重新表达,并且这些影响可受到 TNBC 分子特征的影响。
- 底板 - 底板上支撑的所有功能 - MIPI连接器(DSI和CSI) - 传感器和电动机控制,can等的扩展标头(Arduino,i3c ++),在板上程序员,传感器,传感器,A/DMIC,A/DMIC,USB设备/EDER +EDER,ETHERNET +EDER,ETHERNET +EDER,ETHERNET +EDER,ENERNET +EDER,ENERNET +EDER Q.83/E83/E83/e83/e83/e83/e83/e83/e83/e83/e83/e83 33 ospi)和ram - 带有PCB和芯片天线的三频收音机 - capsense
on intrinsic and acquired resistance mechanisms which include increased efflux of chemotherapeutics (e.g., by ABC transporters), increased DNA repair, mutation or alteration of drug targets, epigenetic mechanisms such as epigenetic regulation of gene expression and/or of protein drug targets, induction of senescence, factors in the tumor microenvironment, and epithelial-to-mesenchymal transition [4,5]。为了克服这些抗性因素,除了鉴定新药物外,还必须对这些机制进行透彻的了解。自然衍生的吲哚化合物作为抗癌剂表现出很大的潜力,并且吲哚生物碱药物(例如长春蛋白和葡萄蛋白)自多年以来就可以治疗肿瘤疾病[6,7] [6,7]。基于天然铅吲哚衍生物星孢子蛋白[8-10]开发了基于吲哚酶的糖化酶抑制剂(批准用于转移性肾细胞癌的治疗)和enzastaurin。吲哚也是突出的饮食化合物,以及诸如芥末葡萄糖素,吲哚-3-carbinol(I3c)和3,3'-二烷基甲烷(dim)(dim)的3,3'-二烷基甲醇(dim)抗癌诱导症(以及对磷酸33的抗磷酸33)的活性(dim)的活性(dim)的3.-二烷基甲烷(dim),因子κB(NF-κB)信号传导[图1] [11-13]。很久以前,Cato The Elder建议卷心菜叶治疗癌性溃疡和统计数据,现在表明,人群随着十字花科蔬菜的消费量增加显示出较低的癌症事件[13-15]。天然吲哚葡萄糖醇分解为I3c,并在食用时在胃中形成昏暗。然而,DIM的生物利用度较差,并且在体内测试中通常需要制剂[11,16]。DIM的合成衍生物已通过各种合成方法制备[17,18]。几种昏暗的衍生物揭示了针对癌细胞的高活性[7,19]。在本综述中介绍了DIM及其合成衍生物的抗癌活性的当前状态,重点是癌症耐药性,肿瘤生长抑制以及有关其对信号通路和转录因子的影响的新见解。
自动蛋白功能预测涉及从其已知序列推断蛋白质的功能。此函数通常由从预定义的基因本体论中提出的术语列表来描述,该术语是在层次上组织的。预测蛋白质功能需要为每个项做出二进制决策,确定它是否适用于给定序列。论文将主要探讨深度转移学习的应用,并利用蛋白质级信息和注释之间的相互关系。要求:1。了解深度学习和转移学习。2。在自动化蛋白质功能预测中熟悉当前的最新技术,特别强调了最近的深度学习工具。3。进行文献搜索方法AD 1和2。4。设计自己的算法 /修改现有算法,以自动预测蛋白质功能,并深入转移学习。5。将您的解决方案与基本基准测试(BLAST + KNN,PRIORS)或搜索中讨论的方法与可用实现进行比较,使用传统的评估分类器质量的度量(精度,回忆,F1)。
