背景 生长素诱导降解 (AID) 技术可通过化学遗传学控制蛋白水解 [ 1 ]。为了应用 AID,需要通过基因工程将不稳定肽或“降解决定子”标记到目标蛋白上。生长素受体(如 Os TIR1)在相同细胞中外源表达,作为 Skp1-Cullin1-TIR1 (SCF TIR1 ) 泛素连接酶复合物的底物识别亚基发挥作用。生长素(如吲哚-3-乙酸,IAA)作为化学胶水连接 SCF TIR1 泛素连接酶和降解决定子标记蛋白,导致降解决定子标记蛋白快速多泛素化和蛋白酶体降解 [ 1 , 2 ]。 AID 能够快速高效地降解靶蛋白,避免长期沉默或 CRISPR 敲除过程中出现的副作用,并为理解动态生物过程中不同靶蛋白的功能提供了重要的机制见解 [ 3 – 7 ]。然而,一些障碍限制了我们充分发挥 AID 潜力的能力。
媒体实验室教师也继续领导学术研究和教育方面的卓越表现。在2023财年,Hiroshi Ishii教授被任命为最新的ACM研究员队列;尼尔·格森菲尔德(Neil Gershenfeld)教授当选为国家工程学院;罗莎琳德·皮卡德(Rosalind Picard)教授获得了2022年的“伦巴迪亚·里切尔卡(Lombardiaèricerca)”国际奖,该奖项由意大利伦巴第(Lombardy)颁发;帕蒂·梅斯(Pattie Maes)教授获得了荷兰公开大学的荣誉博士学位; Fadel Adib教授因与Csail教授Dina Katabi共享的荣誉,获得了ACM Sigmobile时报奖。丹妮尔·伍德(Danielle Wood)教授被当选为国际宇航员学院(IAA)的正式成员; Deblina Sarkar教授获得了美国国立卫生研究院(NIH)董事的新创新奖;扎克·利伯曼(Zach Lieberman)教授被评为国际联盟(AGI)联盟。在2023财年,Hiroshi Ishii教授被任命为最新的ACM研究员队列;尼尔·格森菲尔德(Neil Gershenfeld)教授当选为国家工程学院;罗莎琳德·皮卡德(Rosalind Picard)教授获得了2022年的“伦巴迪亚·里切尔卡(Lombardiaèricerca)”国际奖,该奖项由意大利伦巴第(Lombardy)颁发;帕蒂·梅斯(Pattie Maes)教授获得了荷兰公开大学的荣誉博士学位; Fadel Adib教授因与Csail教授Dina Katabi共享的荣誉,获得了ACM Sigmobile时报奖。丹妮尔·伍德(Danielle Wood)教授被当选为国际宇航员学院(IAA)的正式成员; Deblina Sarkar教授获得了美国国立卫生研究院(NIH)董事的新创新奖;扎克·利伯曼(Zach Lieberman)教授被评为国际联盟(AGI)联盟。
摘要:对1型糖尿病(T1D,发病率1:300)的筛查,其年龄为2和6岁,虽然敏感,但缺乏预防策略。Cholecalciferol 2000 IU每天自出生以来,T1D在1年时降低了80%。T1D相关的T1AB在12个儿童中与口服骨化三醇在0.6年内被否定。为了进一步研究骨化三醇及其钙化类似物(Paricalcitol)的二级预防,我们启动了一项前瞻性介入的非随机临床试验,PERSAL研究(ISRCTN17354692)。总共包括50名高风险儿童:44个T1AB阳性,而T1D HLA基因型的6个具有易感性。九个T1AB+患者的葡萄糖耐量受损(IGT)可变,四个患有T1D前(3 t1ab+,1 HLA+),九个具有T1AB+ New-Ontet T1D T1D,不需要诊断时需要胰岛素。T1AB,甲状腺/抗transglutaminase abs,葡萄糖/钙代谢之前是先前确定的,在钙三醇,0.05 mcg/kg/day或副核酸1-4 mcg×1-4 mcg×1-3次/天/天/天/天p.o上。在胆固醇的杂质上。Available data on 42 (7 dropouts , 1 follow-up < 3 months) patients included: all 26 without pre-T1D/T1D followed for 3.06 ( 0.5–10 ) years negativized T1Ab (15 +IAA, 3 IA2, 4 ICA, 2 +GAD, 1 +IAA/+GAD, 1 +ICA/+GAD) within 0.57 (0.32–1.3) years or did not develop to T1D (5 +HLA,随访3(1-4)年)。在四个前T1D病例中,一个否定的T1AB(随访1年),一个 +HLA没有发展为T1D(随访3。3年),两名 +T1AB患者在6个月/3年内发展为T1D。九个T1D病例中有3例立即发展为明显的疾病,其中6例完全缓解了1年(1个月至2年)。五个 +T1AB患者在恢复治疗后再次复发和负面分析。四个(年龄<3年)否定性抗TPO/TG和两个抗Transglutaminase-iga。八个出现了轻度的高钙/高钙血症,并以剂量滴定/停药解决。使用骨化三醇和副醇对T1D进行二次预防,如果在血清转化后尽快开始,似乎可能是可能且相当安全的。
这项倡议的合作旨在协助国家和国际决策者促进外层空间的安全利用。从那时起,这三个组织都成立了致力于空间交通管理 (STM) 的工作组,这些工作组并行工作并相互联系,目标是创建一份联合综合文件,解决空间交通管理 (STM) 的关键概念。2006 年,IAA 为 STM 提供了第一个全面的定义:一套技术和监管规定,用于促进安全进入外层空间、在外层空间运行以及从外层空间返回地球时不受物理或射频干扰。这项联合努力建立在这一初步定义的基础上,并通过经验和全球对话解释了 STM 领域的发展。以下执行摘要简要描述了完整报告,可在 https://iafastro.directory/iac/folder/tc/spacetraffic/ 找到。
本文建立在国际精算协会(IAA)气候风险纸系列的基础上,并专注于与气候相关的风险如何影响社会保障。特别是,它集中于社会保护福利的资助和设计的方式,并承认与气候相关的风险可能会影响人口统计和社会经济的假设,此外还对早期论文中讨论的投资回报和金融市场稳定性的假设除外。参与社会保障分析,预测和估值的精算依赖于受气候相关的身体和过渡风险影响的一系列人口,社会经济和与投资有关的假设。因此,对实际情况的考虑对于中期和长期预测越来越重要。本文中讨论的假设和场景有许多不确定性,尤其是与政策制定者,金融市场和环境对气候风险的反应相关的假设和方案。虽然估计气候场景的概率是一个挑战,但在这些场景中仍然有很大的价值,并且通过预测和估值来量化风险,以更好地为决策提供信息。
自然设法以最有效的方式解决了最大的完美挑战。使用自然作为模型,Mahle现在通过其新的电池冷却板实现了技术飞跃。该小组的工程师已经开发了一种仿生结构,即以自然为模型 - 对于冷却通道而言,使冷却液的流动方式不同。这显着提高了冷却板的热力学性能和结构机械性能。结果,马勒能够将冷却性能提高10%,并将压力损失降低20%。因此,电池可以可靠,同质地保存在必要的温度窗口中。因此,它变得更加有效,可以更快地充电。此外,其服务寿命也会增加。最重要的是,Mahle将用于板的材料量减少了15%,从而节省了15%的CO 2。Mahle将首次在IAA机动性上向公众展示其新的仿生电池冷却板。汽车贸易展览会将于2023年9月4日至10日在慕尼黑举行。
摘要动物体内的激素信号传导通常涉及直接转录因子-激素相互作用,从而调节基因表达。相比之下,植物激素信号传导最常见的是基于通过转录阻遏物的降解来解除阻遏。最近,我们发现了一种植物激素生长素的非典型信号传导机制,其中生长素直接影响非典型生长素反应因子 (ARF) ETTIN 对靶基因的活性,而无需蛋白质降解。在这里,我们表明 ETTIN 直接结合生长素,导致与 TOPLESS/TOPLESS-RELATED 家族的辅阻遏蛋白分离,随后组蛋白乙酰化并诱导基因表达。这种机制让人想起动物激素信号传导,因为它影响对靶基因的调节活性,并提供了植物中 DNA 结合激素受体的第一个例子。虽然生长素通过促进 Aux/IAA 阻遏物的降解间接影响典型的 ARF,但 ETTIN-生长素直接相互作用允许以可立即逆转的方式在抑制和去抑制染色质状态之间切换。
订阅者信息依据艺术。根据 (EU) 2016/679 条例 (GDPR) 第 13 条,我们通知您,您的个人数据将由特伦托工商会、工业会、手工艺会和农业会(数据控制者)处理,以便发送出版物“Economia trentina”。在任何情况下,您的数据都不会被披露或转移到国外,但可能会传达给负责执行或提供特定服务的第三方,这些服务严格用于发送杂志,并且仅在现行法律规定的限制和方法范围内。所提供的数据将被保留至达到指定目的所需的时间。您可以根据条款主张您的权利。 15 及以下。 GDPR(取消、阻止、更新、更正、可移植性、数据集成、反对数据处理和向隐私担保人投诉),特别是您可以随时通过写信给特伦托 IAA 商会(地址:Calepina 13, 38122 Trento)(cciaa@tn.legalmail.camcom.it)或数据保护官(rpd@tn.legalmail.camcom.it)请求从地址簿中删除您的姓名。
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。