抽象锂硫(LI-S)电池是最有希望的下一代高能密度二级电池之一。然而,在循环过程中,诸如航天飞机效应,缓慢的反应动力学和锂树突生长等问题所阻碍了它们的实际应用。本报告着重于高能密度LI-S电池所需的关键材料和设备设计。它通过检查催化剂表面的电子结构来提出了阴极催化剂的合理设计。具体而言,它引入了过渡金属催化剂的D轨道和锂多硫化物的P-轨道之间的杂交概念,这些锂多硫化物可以用作筛选Li-Scowers单原子催化剂的描述符。机器学习被用来开发一个可以有效筛选过渡金属化合物催化剂的二进制描述符,从而阐明了LI-S催化中的电子和结构效应。提出了一种普遍的策略来调整催化剂的旋转和轨道拓扑。该报告还探讨了LI-S电池催化剂中随时间推移的不同轨道杂交之间的过渡。为了解决锂树突的不受控制的生长以及相关的安全风险,在共同调节的质量和电荷运输下,Li-S阴极与阳极之间的耦合机制被揭露,从而指导电极结构的合理设计。提出了基于分层结构的人造固体电解质相(SEI)层,以稳定锂金属阳极并防止树突形成。另外,通过调整电解质的溶剂化结构,可以实现SEI层的分子级控制,从而导致锂金属阳极的稳定循环。建立在这个基础上,已经制定了制备高硫载电极的系统策略。该报告研究了LI-S完整细胞的构建,分析了关键技术和过程参数如何影响Li-S袋细胞的电荷分离和循环性能。优化这些参数后,小袋单元的能量密度超过400 WHkg⁻。
摘要 有机-无机杂化钙钛矿已迅速发展成为太阳能电池和 LED 的多功能半导体,其特性可通过成分和晶体结构修改进行调节。本次演讲将概述我们使用具有定制功能组的小分子控制钙钛矿尺寸和纳米结构的策略,从而开发出高度稳定和高效的准二维钙钛矿太阳能电池。我们还利用有机太阳能电池的界面工程技术来增强钙钛矿太阳能电池和有机/钙钛矿串联太阳能电池中的电荷收集和缺陷钝化。除了太阳能电池之外,我们的研究重点是用于照明、显示技术和可见光通信 (VLC) 的钙钛矿发光二极管 (PeLED)。对于绿色 PeLED,我们采用界面化学辅助原位生长具有超低陷阱密度的高质量钙钛矿薄膜,显着提高亮度、工作寿命和效率。在蓝色和白色 PeLED 中,我们使用自组装单层 (SAM) 来提高稳定性、效率和色纯度,并采用下转换方法获得高品质白光。这些进步凸显了钙钛矿材料在各种光电应用中的潜力,包括 VLC 和可能性激光。
iapmo,在加利福尼亚州安大略省的地热能系统和环境温度循环(ATL)的独立文档(2024年9月9日) - iAPMO®以及在佩斯大学(Pace University)的Elisabeth haub School(umcibore abointial abointial机构)中,AIAPMO®和气候中心(Uniber Oniber)已与Uniber Ofime(Uniber Oustrubite)同意,文档(IAPMO/UMC/第17-2024章),以满足地热区环境温度循环系统的可执行安全规定的需求。步伐向IAPMO提供了有关本文档的开发。区域环境温度回路是一个无尽的闭环系统,由集中式抽水组成,用于在循环上安装的多个热交换设备之间循环循环。无尽的循环可能在条件空间外运行,以提供多个结构和安装在其中的热交换设备。
摘要:由于其超高的能量转移效率,近场辐射传热显示出在各种新兴技术领域中应用的显着潜力。目前,研究近场辐射传热问题的主要理论框架包括传统的波动电动力学(FE)理论和最近提出的非平衡绿色功能(NEGF)方法。在两种方法中,物体之间的辐射热通量取决于计算物体对外部电磁场的响应函数。本报告介绍了基于密度功能理论的第一原理方法,在不同温度下对物体之间计算近场辐射热通量的方法。它提供了计算公式,其中包括FE和NEGF方法的局部现场效应。使用二维材料(例如石墨烯)作为示例,我们介绍了近场辐射热通量与物体之间的距离以及辐射能谱之间的关系。然后,我们系统地比较了第一原理方法和传统理论模型对诸如石墨烯极化之类的响应函数的影响。最后,我将在完全非平衡条件下的光子电子相互作用引起的统一的能量,动量和角动量转移理论引入开拓性工作。
便携式Aifibres-使用先进的深度学习,计算机视觉模型,多光谱传感器和自动化机器人技术来开发便携式,易于使用的扫描和排序系统,用于垃圾服装和面料
1 100029,中国科学学院,中国100029,2计算机网络信息中心,中国科学学院,北京,北京,100083,中国3个环境监测和研究中心,珍珠河谷和南方海洋生态和环境部,珍珠河谷和南方学院,prc office and Enciply of prc,prc osprapry of prc office osprication of prc sopricati科学,青岛,266000,中国5国家大气研究中心,P.O。 Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学100029,中国科学学院,中国100029,2计算机网络信息中心,中国科学学院,北京,北京,100083,中国3个环境监测和研究中心,珍珠河谷和南方海洋生态和环境部,珍珠河谷和南方学院,prc office and Enciply of prc,prc osprapry of prc office osprication of prc sopricati科学,青岛,266000,中国5国家大气研究中心,P.O。 Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学100029,中国科学学院,中国100029,2计算机网络信息中心,中国科学学院,北京,北京,100083,中国3个环境监测和研究中心,珍珠河谷和南方海洋生态和环境部,珍珠河谷和南方学院,prc office and Enciply of prc,prc osprapry of prc office osprication of prc sopricati科学,青岛,266000,中国5国家大气研究中心,P.O。 Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学100029,中国科学学院,中国100029,2计算机网络信息中心,中国科学学院,北京,北京,100083,中国3个环境监测和研究中心,珍珠河谷和南方海洋生态和环境部,珍珠河谷和南方学院,prc office and Enciply of prc,prc osprapry of prc office osprication of prc sopricati科学,青岛,266000,中国5国家大气研究中心,P.O。 Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学100029,中国科学学院,中国100029,2计算机网络信息中心,中国科学学院,北京,北京,100083,中国3个环境监测和研究中心,珍珠河谷和南方海洋生态和环境部,珍珠河谷和南方学院,prc office and Enciply of prc,prc osprapry of prc office osprication of prc sopricati科学,青岛,266000,中国5国家大气研究中心,P.O。Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学Box 3000,Boulder,Co 80307,美国6物理系,奥克兰大学,Thamaki Makaurau / Auckland / Auckland,Aotearoa / aotearoa / New Zealand 7 St. Thomas University of St. Thomas大学,工程学院,萨米特大街2115号意大利9中国海洋深海洋多角质与地球系统和物理海洋学实验室,中国海洋大学,266100,中国10号国家主要海洋学国家主要实验室,中国海洋学研究所,中国科学院,广州,广州,等等宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学的地球与环境科学
•领导了对印度共同标准计划NIAP的成功评估,日本的JISEC(日本IT安全评估和认证)计划对印度普通标准认证计划(IC3S)进行了自愿定期评估(VPA)。领导这项评估导致对NIAP员工的培训和所有三个国家之间的知识共享,以改善自己的每个组织过程。
泼尼松龙是一种合成的肾上腺皮质类固醇药物,主要具有糖皮质激素特性。其中一些特性可重现内源性糖皮质激素的生理作用,但其他特性不一定反映肾上腺激素的正常功能;只有在服用大量治疗剂量的药物后才会出现。泼尼松龙的药理作用源于其糖皮质激素特性,包括:促进糖异生;增加肝脏中糖原的沉积;抑制葡萄糖的利用;抗胰岛素活性;增加蛋白质的分解代谢;增加脂肪分解;刺激脂肪合成和储存;增加肾小球滤过率,从而增加尿酸的排泄量(肌酐排泄量保持不变);增加钙排泄量。
2024年的IAPRI世界包装会议将探讨该领域的最新研究进展,自2024年以来,ITENE将带来30年的经验,研究中心将庆祝三十年的活动,致力于通过R&D项目,咨询服务,培训和培训,庆祝科学技术知识,以生成科学技术知识,以将其转移到公司中。
本课程着重于中东和北非的企业家船和创新生态系统,利用了历史悠久的亚伯拉罕协议。该课程提供了有关区域参与者的背景 - 以色列,阿联酋,巴林,摩洛哥,埃及和约旦以及与经商有关的社会和地缘政治问题。学生将直接从主要利益相关者那里听证,探讨企业家,范围资本家,跨国公司,大学和政府的作用。学生将学习成功咨询咨询活动的麦肯锡流程以及使高表现的团队的原因。在IAP期间,学生团队在现场旅行与他们的东道公司合作。