1.4 RPS 可以在 RLOS(无线电视线)和 RLOS 之外(BRLOS - 无线电视线之外)与 RPA 和 ATC 交互;在后一种情况下,它们使用卫星或机载链路。在卫星通信的情况下,没有关于 RPS 和卫星之间网络的信息,也没有关于地球到卫星信号跳跃次数的信息,也没有关于随之而来的信号延迟的信息。卫星通信带来了关键的操作挑战,即信号传输延迟增加且可能不可预测,以及卫星通信服务提供商认证或监管监督的监管挑战。在机载通信的情况下,对 C2 数据链路的某些要求(参见下文)导致有关 RPS 和 RPA 之间可用机载网络(A 网络)的完整信息(网络图);空中跳跃次数和信号延迟被最小化和已知。
有没有一种好的方法可以解释航空业的非二氧化碳效应?一个问题是如何衡量非二氧化碳效应与二氧化碳引起的气候变化之间的关系。人们可能倾向于使用航空业引起的总辐射与仅来自航空业二氧化碳排放的辐射之间的比率,即所谓的辐射强迫指数 (RFI)。然而,辐射强迫指数是一种回顾性指标,即它解释了过去发生的所有过程的影响。如图 1 中的红色条所示,2000 年的航空业辐射强迫指数累计了自 1940 年以来航空业的所有贡献,并根据各个物种的生命周期进行了加权。虽然 NOx 引起的臭氧和凝结尾迹的 RF 基本上仅来自 2000 年的空中交通,但 CO 2 引起的 RF 则来自自 1940 年以来累积的 CO 2。对于恒定的机队和航空排放,臭氧和凝结尾迹的 RF 是恒定的,但航空 CO 2 引起的 RF 会增加,因为 CO 2 会进一步积累。因此,
国际民航组织普遍安全监督审计计划 (USOAP) 持续监测方法 (CMA) 通过评估和监测安全监督系统关键要素 (CE) 的有效实施 (EI) 来确定各国的安全监督能力。全球平均 EI 从 2018 年的 67.43% 上升到 2019 年的 68.83%,其中 46% 的国家已实现 2020-2022 年版 GASP 确定的 2022 年 75% EI 目标。2019 年,10 个国际民航组织成员国在人员执照、航空器运行和空中导航服务领域共计出现 6 起重大安全隐患 (SSC)。截至 2019 年 12 月,已对三个州进行了三次国家安全计划实施评估 (SSPIA)。
国际民用航空组织以英文、阿拉伯文、中文、法文、俄文和西班牙文单独出版 999 Robert-Bourassa Boulevard, Montréal, Quebec, Canada H3C 5H7 如需订购信息和完整的销售代理及书商列表,请访问国际民航组织网站 www.icao.int 2020 年 5 月第一版 Doc 10144 — 国际民航组织《与 COVID-19 相关的航空安全风险管理手册》 © ICAO 2020 保留所有权利。未经国际民用航空组织事先书面许可,不得以任何形式或任何手段复制、存储于检索系统或传播本出版物的任何部分。
机长专心驾驶飞机,而副驾驶则按顺序执行下方 ECAM 显示屏上自动出现的检查单操作。飞行员使用的是主动降噪 (ANR) 耳机,飞行对讲机的丢失使他们之间的通信变得困难。由于缺乏照明,副驾驶难以识别顶板上某些开关的位置,但能够执行 ECAM 检查单操作。机组人员可以使用应急手电筒,但并未使用。当副驾驶将 AC ESS FEED 按钮开关选择为“ ALTN ”(备用)时,大多数受影响的系统在大约 90 秒后恢复。这是 ECAM 显示屏上的第九或第十行。随后,机长和副驾驶的主飞行显示器和导航显示器、上部 ECAM 显示器、无线电、应答器和大多数其他受影响的系统均已恢复。副驾驶继续执行 ECAM 操作,并重置了已脱机的 1 号发电机。自动推力系统未恢复,因此需要在剩余的飞行时间内手动控制发动机推力。通信现已重新建立,机长向 ATC 发送了“PAN”呼叫,告知他们飞机遇到的问题;他被指示保持当前高度和航向。然后,他请求并被分配了等待航线,以便机组人员有时间检查飞机的状态。机长将飞机的控制权移交给副驾驶,以便他评估情况。在货舱内,机组人员和乘客被告知了情况,并启动了辅助动力装置 (APU) 作为预防措施,以便其发电机可以在需要时提供电力,但并未使用。
8.1.4.1.2 在呼叫发起的瞬间,如果由于 AES 上较低优先级呼叫的阻塞而导致呼叫没有足够的 AES 资源,AES 将推迟这些资源的抢占,并按照 8.1.4.1.1 进行,直到从 GES 收到 C 信道分配。这将允许 AES 根据来自 GES 的确切 EIRP 分配做出适当的抢占决定。收到 C 信道分配后,所有必需的 AES C 信道资源(即信道单元和 AES EIRP)将从较低优先级呼叫中抢占(如果需要)并分配给呼叫。随后,在 GES 忙于完成到地面目的地的呼叫时,立即对 C 信道子带进行进一步的信令和连续性检查。
AIRCOM 还通过 Inmarsat 卫星提供数据和语音服务,覆盖范围覆盖南北 80 度之间的全球范围(自 2009 年以来,使用 I4 星座),并且还受益于日本 MTSAT 卫星。
2022 年报告中强调的主要成就之一是长期理想目标 (LTAG) 报告,其中包含有关国际航空长期理想目标 (LTAG) 可行性研究工作的信息。根据国际民航组织大会要求国际民航组织理事会调查国际航空 LTAG 的可行性,航空环境保护委员会 (CAEP) 通过协作、包容和透明的流程进行了全面的技术分析。2022 年 2 月举行的航空环境保护委员会第十二次会议 (CAEP/12) 一致通过了一份技术报告,该报告讨论了一系列 LTAG 方案的可行性,强调了通过包括创新技术、运营和燃料在内的行业内措施显着减少二氧化碳排放的潜力。
电子地形障碍物数据概述 根据国际民用航空组织(ICAO)附件15中的新要求(第33号修正案),所有ICAO参与国应确保在2008年11月20日至2015年11月12日期间以电子格式提供地形和障碍物数据。这些数据应由任何机场周围的四个覆盖区域定义,根据每个区域的具体数值要求进行收集,并存储在具有ICAO定义的障碍物和地形要素类属性的地理数据库(数据集ICAO术语)中。障碍物要素可以表示为点、线或多边形,地形数据可以作为不同格式的栅格数据集添加(所有要素类必须根据ICAO Doc 9881中的要素目录进行建模)。可靠且精确的障碍物和地形数据可用于飞行中和地面应用,可为国际民航提供显着的安全效益。理想情况下,数据应以地理信息格式呈现,以便于评估和呈现给用户(像素高程工具提示)。(此修改段落的来源位于:http://www.esri.com/library/whitepapers/pdfs/esri-aeronautical-implementing-etod.pdf )注意:为了促进合规性,Esri 已将电子地形和障碍物数据库 (eTOD) 功能添加到 Esri® 航空解决方案中。