摘要。格陵兰数字高程模型 (DEM) 对于实地考察、冰速计算和质量变化估计必不可少。以前的 DEM 为整个格陵兰岛提供了合理的估计,但应用源数据的时间跨度可能会导致质量变化估计偏差。为了提供具有特定时间戳的 DEM,我们应用了大约 5 。从 2018 年 11 月到 2019 年 11 月的 8 × 10 8 ICESat-2 观测来生成新的 DEM,包括格陵兰岛外围的冰盖和冰川。分别在 500 m、1 km、2 km 和 5 km 网格单元进行时空模型拟合过程,并以 500 m 的模态分辨率发布最终 DEM。总共有 98% 的网格由模型拟合获得,其余的 DEM 间隙通过普通克里金插值法估算。与机载地形测绘仪 (ATM) 激光雷达系统获取的 IceBridge 任务数据相比,ICESat-2 DEM 估计最大中值差异为 − 0 。48 米。通过模型拟合和插值获得的网格性能相似,均与 IceBridge 数据高度一致。在低纬度和高坡度或粗糙度地区,DEM 不确定性会增加。此外,与其他高度计得出的 DEM 相比,ICESat-2 DEM 显示出显着的精度改进,并且其精度与立体摄影测量和干涉测量得出的精度相当。格陵兰 DEM 及其不确定性可在 https://doi.org/10.11888/Geogra.tpdc.271336 (Fan 等人,2021 年) 上找到。总体而言,ICESat-2 DEM 在各种地形条件下都表现出了出色的精度稳定性,可以提供具有特定时间戳的高精度 DEM,这将有助于研究格陵兰岛海拔和质量平衡变化。
近岸水深测量的价值始终与采集它们的难度成正比。几个世纪以来,绘制浅水沿岸区域的水深图对航行一直至关重要,因为那里是货船和渔船进出港口等船舶交通繁忙的地方。近几十年来,随着休闲船只的使用和其他海上娱乐活动的增加,近岸区域测绘的需求也愈加强烈。然而,精确的海床深度测量的应用并不仅限于船舶航行。海岸线上度假村、能源设施和其他基础设施的建设需要关于水面下情况的详细信息。面对发展和气候变化,保护这些地区的海洋生物和自然栖息地已经将海岸线变成了环境保护的前线。在 20 世纪,铅线测量和其他获取水深数据的手动方法主要被自动船载技术(如单波束和多波束声纳)所取代。虽然这些技术在较深的水域中非常准确且具有成本效益,但部署在靠近海岸的地方却具有挑战性。在浅水、动态沿海地区操作大型海洋测量船对船舶、船员和仪器构成危险。此外,这些浅水