由于电表后太阳能光伏 (PV) 的能量生产和潜在的反向功率流会发生显著波动,因此它能够对配电系统产生影响。虽然这些现象很容易理解,但本研究将调查在现实配电网中观察到电压上升和闪烁时的太阳能渗透水平。使用路易斯安那州立大学可再生能源与智能电网实验室以四秒为间隔测量的太阳能数据以及当地公用事业公司提供的详细馈线数据,我们调查了太阳能光伏渗透水平的提高对电压上升和长期闪烁的影响。结果表明,在观察到电压上升和闪烁之前,馈线可以处理多达 10% 安装 7 kW 电表后太阳能系统的客户。当渗透率超过 30% 时,馈线会出现严重的电能质量问题。我们发现特定馈线的安全渗透率取决于系统的拓扑结构。 © 2020 Elsevier Ltd. 保留所有权利。
摘要:本综述旨在总结目前关于闪烁光的知识以及大脑处理闪烁光时发生的潜在过程。尽管人们对闪烁光的兴趣日益浓厚,但其临床应用仍未得到充分了解。使用 EEG 的研究表明,脑电波频率与闪烁光频率似乎同步,希望它能用于记忆疗法等应用。一些研究人员专注于使用闪烁测试作为唤醒指标,如果能描述这种关系的背景,这可能对临床研究有用。然而,由于闪烁测试有诱发癫痫发作的风险,因此必须尽一切努力避免高风险组合,例如以 15 Hz 闪烁的红蓝光。未来的研究应侧重于使用神经影像方法来描述大脑在处理闪烁光的过程中发生的特定神经心理和神经生理过程,以便初步确定其临床效用,并启动随机临床试验来测试现有报告。
无闪烁技术会减少频率,从而为您提供更舒适的游戏体验。使用PWM(脉冲宽度调制)调节亮度, 会导致弹性并在长时间内导致眼睛不适。 AOC无流动技术使用DC(直流)背光系统提供更舒适,更健康的观看体验,从而最大程度地减少了工作时间的眼睛疲劳的影响。会导致弹性并在长时间内导致眼睛不适。 AOC无流动技术使用DC(直流)背光系统提供更舒适,更健康的观看体验,从而最大程度地减少了工作时间的眼睛疲劳的影响。会导致弹性并在长时间内导致眼睛不适。AOC无流动技术使用DC(直流)背光系统提供更舒适,更健康的观看体验,从而最大程度地减少了工作时间的眼睛疲劳的影响。
摘要:与替代方法相比,由于较高的信息传输速率和最少的训练设置更容易设置,大脑计算机界面(BCI)的稳态视觉诱发电位(SSVEP)方法很受欢迎。具有精确生成的视觉刺激频率,可以将大脑信号转换为外部动作或信号。传统上,使用或不带有凝胶的电极从枕骨区域收集SSVEP数据,通常安装在头顶上。在这项实验研究中,我们开发了一个入耳式电极来收集四个不同频率的SSVEP数据,并将其与枕头皮电极数据进行比较。来自五个参与者的数据证明了基于耳电极的SSVEP的可行性,显着增强了可穿戴BCI应用的可实用性。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,以及在黄光照射 (592 nm) 期间进行,接近测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,在黄光照射 (592 nm) 期间也是如此,接近于测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
电荷尺度数字对模拟转换器的准确性和性能(DACS)(图1(a))取决于二进制加权电容器比率,这可能会受到MIS匹配的干扰。关键因素是电容器阵列中单位电容器C U的选择。由于n位二进制加权DAC使用2 N单位电容器来提供所需的电容器比率,其面积,总电容和功率用n呈指数增加。选择较小的C u会降低阵列的大小并减少沉降时间,这是因为电容器充电/排放电容器的较低时间常数。但是,较小的C U导致更大的随机不匹配和线性问题。在文献中,经常在经验上选择C U。在[1]中尝试确定最小C U的系统方法,但模型是建立在较旧的散装技术节点上的,而忽略了电线寄生虫和随机变化的影响;特别是在FinFET节点中,这些效果可能很重要。此外,它们无视对关键DAC线性指标的影响。在[2]中,研究了寄生能力的某些组成部分对增益误差和热噪声的影响,但是该工作并未探索一种发现C U的方法。我们提出了一种系统的方法,用于查找最佳的单位电容,C u,该方法考虑了系统的和随机变化,电线寄生虫,频噪声,热噪声和电路级性能指标,包括线性。
参议员罗杰·F·威克的开幕词 威克参议员。听证会将开始。参议院军事委员会海上力量小组委员会今天下午召开会议,审查海军陆战队地面系统现代化计划。今天下午,我们欢迎海军陆战队陆地系统项目执行官约翰·M·加纳先生、作战发展与一体化副司令罗伯特·S·沃尔什中将。沃尔什将军也是海军陆战队作战发展司令部的总司令,以及海军陆战队系统司令部司令约瑟夫·F·施拉德准将。我们的小组委员会感谢这些杰出的证人,感谢他们无私而坚定地为国家服务。俗话说,没有比海军陆战队员更好的朋友了。也没有比美国海军陆战队员更可怕的敌人。我坚信这种情绪体现了海军陆战队的专业精神和坚韧不拔的精神。坚韧不拔、机智聪慧是海军陆战队 DNA 中根深蒂固的特质。在过去 15 年的战争中,这些特质让海军陆战队受益匪浅。然而,即使是海军陆战队也有极限。持续不断的作战节奏损害了战备状态,破坏了更换老化设备的关键现代化努力。今天,小组委员会将重点讨论现代化问题,但我再怎么强调战备状态与现代化之间的联系也不为过。
• 对距离、间隙、速度等判断错误 • 视觉错觉导致的错误感知。影响视觉表现的情况: — 毫无特征的地形(如沙漠、干湖、水、雪地)。 — 黑暗和能见度差。 — 烟雾和不断变化的烟雾形状。 — 山地地形或倾斜的跑道。 — 导致闪烁眩晕的异常灯光效果。 — 物体与背景对比度低或照明度差。 — 观看明亮的阳光或月光。 — 阴影。 — 白茫茫的雪景。 • 空间定向障碍和眩晕。影响身体位置感的情况: — 失去视觉线索。 — 不良医疗状况或生理状况(酒精和药物影响、宿醉、脱水、疲劳等)。 — 上下移动头部、前后张望以换取收音机、接听或使用手机。 • 失去态势感知。类型: — 地理定向障碍(如偏离路线、失去位置意识)。 — 普遍丧失情境意识(如无法察觉危险情况)。 — 错误的情况评估(误解情况或条件)。 — 无法预测或预期变化的情况。 — 错误假设确认偏差(持续错误感知或误解情况)。 • 注意力不集中(如在获得正确信息时无法监控或做出反应)。 类型: — 无法目视车辆或设备外部的危险情况。 — 遗漏清单项目。 —