发明了“傅立叶头”,这是一种新型的神经架构,利用傅立叶分析中的工具,以连续的结构学习了分配分布;使用该体系结构将决策者代理的回报提高了46%(在ICLR 2025的提交下)提出了第一种稳定自我消耗的生成模型训练的技术;在使用扩散模型的人类运动产生的情况下,使用该技术来修复模型崩溃;由4名学生研究人员组成的LED团队(ICML 2024)发明了数学上严格的方法,用于测量单词嵌入空间的空间利用的均匀性;使用新颖的指标来证明使用脆性指标(ACL 2022)
- AE:Pierre Baldi。自动编码器,无监督的学习和深度体系结构。在ICML关于无监督和转移学习的研讨会上,第37-49页。JMLR研讨会和会议记录,2012年。URL http://proceedings.mlr.press/v27/baldi12a/baldi12a.pdf - vae-paper:Diederik P. Kingma和Max Welling。 自动编码变分贝叶斯。 在Yoshua Bengio和Yann Lecun,编辑,第二届国际学习代表会议,ICLR 2014,2014年,AB,加拿大AB,2014年4月14日至16日,2014年会议赛道诉讼,2014年。 url http:// arxiv.org/abs/1312.6114 - vae-tutorial:Diederik P Kingma,Max Welling等。 变分自动编码器的简介。 基金会和趋势®在机器学习中,12(4):307–392,2019。 url https:// www。 nowpublishers.com/article/downloadsummary/mal-056 - 重要性 - 智慧:Yuri Burda,Roger Grosse和Ruslan Salakhutdinov。 重要的加权自动编码器。 ARXIV预印ARXIV:1509.00519,2015。 URL https://arxiv.org/pdf/1509.00519URL http://proceedings.mlr.press/v27/baldi12a/baldi12a.pdf - vae-paper:Diederik P. Kingma和Max Welling。自动编码变分贝叶斯。在Yoshua Bengio和Yann Lecun,编辑,第二届国际学习代表会议,ICLR 2014,2014年,AB,加拿大AB,2014年4月14日至16日,2014年会议赛道诉讼,2014年。url http:// arxiv.org/abs/1312.6114 - vae-tutorial:Diederik P Kingma,Max Welling等。变分自动编码器的简介。基金会和趋势®在机器学习中,12(4):307–392,2019。url https:// www。nowpublishers.com/article/downloadsummary/mal-056 - 重要性 - 智慧:Yuri Burda,Roger Grosse和Ruslan Salakhutdinov。重要的加权自动编码器。ARXIV预印ARXIV:1509.00519,2015。URL https://arxiv.org/pdf/1509.00519URL https://arxiv.org/pdf/1509.00519
2024 Best Poster ICLR 2024 Machine Learning for Genomics Exploration Workshop 2023 Best Poster Top 3 out of 200 at Stanford BioX Interdisciplinary Initiatives ($500) 2023 Innovation Award Society for Lab Automation and Screening ($10K) 2023 Media Coverage : The New York Times, AI Is Learning What it Means to Be Alive 2022 Best Poster Intelligent Systems for Mol.生物学(ISMB)(机器学习轨道)2022最佳海报单细胞基因组学符合数据科学,慕尼黑(500美元)2019年GSK授予的全博士资金,包括学费 +全职薪酬(100万美元 +)2018 GSK杰出科学奖,用于蜂窝图像(17K)2010-13级优先证书(17k),学业证书,学术证书(17k),学术证书(x4),x44)技术。
Flesch,Timo,David G. Nagy,Andrew Saxe和Christopher Summerfield(2023)。“与Hebbian上下文门控和成倍衰减的任务信号建模人类的连续学习”。in:PLOS计算生物学19.1。出版商:公共科学图书馆。Flesch,Timo,Andrew Saxe和Christopher Summerfield(3月2023)。“自然和人造代理中的持续任务学习”。in:神经科学的趋势46.3。发布者:Elsevier,pp。199–210。Jarvis,D.,R。Klein,B。Rosman和A.M.萨克斯(2023)。 “关于神经模块的专业化”。 in:第十一国际学习表现会议。 Masís,Javier,Travis Chapman,Juliana Y Rhee,David D Cox和Andrew M Saxe(2023)。 “在感知决策过程中进行策略管理学习”。 in:Elife 12。 Nelli,Stephanie,Lukas Braun,Tsvetomira Dumbalska,Andrew Saxe和Christopher Summerfield(2023)。 “人类和神经网络中的神经知识组装”。 in:Neuron 111.9,pp。 1504–1516。 Patel,Nishil,Sebastian Lee,Stefano Sarao Mannelli,Sebastian Goldt和Andrew M. Saxe(2023)。 “ RL感知器:高维度中政策学习的动态”。 in:ICLR 2023机器学习物理研讨会。 Shamash,Philip,Sebastian Lee,Andrew M. Saxe和Tiago Branco(2023)。 “小鼠通过动作驱动的映射过程识别亚目标”。 in:Neuron 111.12,pp。 1966– 1978年。Jarvis,D.,R。Klein,B。Rosman和A.M.萨克斯(2023)。“关于神经模块的专业化”。in:第十一国际学习表现会议。Masís,Javier,Travis Chapman,Juliana Y Rhee,David D Cox和Andrew M Saxe(2023)。 “在感知决策过程中进行策略管理学习”。 in:Elife 12。 Nelli,Stephanie,Lukas Braun,Tsvetomira Dumbalska,Andrew Saxe和Christopher Summerfield(2023)。 “人类和神经网络中的神经知识组装”。 in:Neuron 111.9,pp。 1504–1516。 Patel,Nishil,Sebastian Lee,Stefano Sarao Mannelli,Sebastian Goldt和Andrew M. Saxe(2023)。 “ RL感知器:高维度中政策学习的动态”。 in:ICLR 2023机器学习物理研讨会。 Shamash,Philip,Sebastian Lee,Andrew M. Saxe和Tiago Branco(2023)。 “小鼠通过动作驱动的映射过程识别亚目标”。 in:Neuron 111.12,pp。 1966– 1978年。Masís,Javier,Travis Chapman,Juliana Y Rhee,David D Cox和Andrew M Saxe(2023)。“在感知决策过程中进行策略管理学习”。in:Elife 12。Nelli,Stephanie,Lukas Braun,Tsvetomira Dumbalska,Andrew Saxe和Christopher Summerfield(2023)。 “人类和神经网络中的神经知识组装”。 in:Neuron 111.9,pp。 1504–1516。 Patel,Nishil,Sebastian Lee,Stefano Sarao Mannelli,Sebastian Goldt和Andrew M. Saxe(2023)。 “ RL感知器:高维度中政策学习的动态”。 in:ICLR 2023机器学习物理研讨会。 Shamash,Philip,Sebastian Lee,Andrew M. Saxe和Tiago Branco(2023)。 “小鼠通过动作驱动的映射过程识别亚目标”。 in:Neuron 111.12,pp。 1966– 1978年。Nelli,Stephanie,Lukas Braun,Tsvetomira Dumbalska,Andrew Saxe和Christopher Summerfield(2023)。“人类和神经网络中的神经知识组装”。in:Neuron 111.9,pp。1504–1516。Patel,Nishil,Sebastian Lee,Stefano Sarao Mannelli,Sebastian Goldt和Andrew M. Saxe(2023)。“ RL感知器:高维度中政策学习的动态”。in:ICLR 2023机器学习物理研讨会。Shamash,Philip,Sebastian Lee,Andrew M. Saxe和Tiago Branco(2023)。“小鼠通过动作驱动的映射过程识别亚目标”。in:Neuron 111.12,pp。1966– 1978年。
赵欣教授于2013年获得中国科学技术大学博士学位。他的研究兴趣包括视频分析和性能评估,尤其针对目标跟踪任务。他发表过许多国际期刊和会议论文,例如IJCV、IEEE TPAMI、IEEE TIP、IEEE TCSVT、CVPR、ICCV、NeurIPS、AAAI、IJCAI。最近,他主要进行人机视觉评估方面的研究。他构建了多个广泛使用的计算机视觉基准测试集(例如GOT-10k、VideoCube、SOTVerse、Biodrone等)并建立了在线评估平台。他定期担任以下会议和期刊的程序委员会成员或同行评审员:CVPR、ICCV、ECCV、ICML、NeurIPS、ICLR、IJCV、IEEE TPAMI、IEEE TIP、IEEE TMM等。
•邀请了关于建模,估算和控制会议(MECC)2024的培训和验证培训和验证的教程课程。•邀请的演讲,标题为“α,β -Crown:具有控制和计划中应用的神经网络的正式验证框架”,在Informs年度会议上,2024年。•邀请的谈话,标题为“α,β-克罗:一个具有控制和计划中应用的神经网络的正式验证框架”,在空中交通工程中的自动驾驶汽车中心(AVIATE),2024年。•邀请的谈话,标题为“在神经网络验证中解决大规模的非凸优化问题”,信息优化社会会议,2024年。•第一和第二届机器学习正式验证的研讨会的共同组织者”,与国际机器学习会议(ICML)2022,2023。•与国际学习表现会议(ICLR)2022。
ICLR 2025交织的场景图,用于交织的文本和图像生成评估。Dongping Chen,Ruoxi Chen,Shu Pu,Zhaoyi Liu,Yanru Wu,Caixi Chen,Caixi Chen,Benlin Liu,Yue Huang,Yao Wan,Pan Zhou,Ranjay Krishna International International In In Machine Learning,Machine Learning,2025 ICLR 2025 ICLR 2025 AHA:一个视觉语言的人,以实现失败的竞争,并合理地覆盖了竞争者,并合理地覆盖了杂物。众包工作流的技术。Madeleine Grunde-McLaughlin,Michelle S. Lam,Ranjay Krishna,Daniel S. Weld,Je Q rey Heer Heer ACM ACM Transactions on Computer-Human互动Neurips Neurips Neurips 2024 Dist Me Night Me。Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, Ranjay Krishna Advances in neural information processing systems, 2024 NeurIPS 2024 Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models .Yushi Hu*,Weijia Shi*,Xingyu Fu,Dan Roth,Mari Ostendorf,Luke Zettlemoyer,Noah A Smith*,Ranjay Krishna*神经信息处理系统的进步,2024年Neurips 2024 Neurips 2024多语言多样性多样性多样性的多样性改善视觉语言表现。Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma, Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, Ranjay Krishna* Advances in neural information processing systems, 2024 Spotlight Paper award (awarded to top 5%) NeurIPS 2024 The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Per- forms Better .Scott Geng,Cheng-Yu Hsieh,Vivek Ramanujan,Matthew Wallingford,Chun-Liang Li,Pang Wei Koh*,Ranjay Krishna*神经信息处理系统的进步,2024 Neurips,Neurips 2024 2024 ActionAtlas:Actionatlas:a Videoqa-benchmark for Videoqa Benchmark for-Frain grave grave grave vrained Capention conterition。Mohammadreza Salehi, Jae Sung Park, Aditya Kusupati, Ranjay Krishna , Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi Advances in neural information processing systems, 2024 NeurIPS 2024 NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples .Wenxuan Peng,Baiqi Li,Zhiqiu Lin,Jean de Dieu Nyandwi,Zixian MA,Simran Khanuja,Deva Ramanan,Ranjay Krishna,Graham Neubig在神经信息处理系统中的进步,2024 Neurips 2024 Neurips 2024 Neurips 2024 Superpuse Supperections singleferess singleferess inderfection in Deciatsions nicledere nitferations in Deciatsions niclederiate bulyse nitferiations in Deciatsions anderfelions in Deciatsions:多个世代。Ethan Shen,Alan Fan,Sarah M Pratt,Jae Sung Park,Matthew Wallingford,Sham M Kakade,Ari Holtzman,Ari Holtzman,Ranjay Krishna,Ali Farhadi,Aditya Kusupati在神经信息处理系统中的进步,2024
Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。 他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。 他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。 最近,他主要进行了有关人类计算机视力评估的研究。 他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等))Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。最近,他主要进行了有关人类计算机视力评估的研究。他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等)使用在线评估平台。他定期担任以下会议和期刊的计划委员会成员或同行审稿人:CVPR,ICCV,ECCV,ICML,ICML,Neurips,ICLR,IJCV,IEEE TPAMI,IEEE TPAMI,IEEE TIP,IEEE TMM,IEEE TMM等
公共许可策略线性上下文匪徒托马斯·克莱恩·布宁(Thomas Kleine Buening),aadirupa saha,Christos dimitrakakis,Haifeng XU神经信息处理系统会议(Neurips),2024年,[PDF],[PDF]逆增强的环境设计 2024, [pdf ] Bandits Meet Mechanism Design to Combat Clickbait in Online Recommendation Thomas Kleine Buening , Aadirupa Saha, Christos Dimitrakakis, Haifeng Xu International Conference on Learning Representations (ICLR), Spotlight Presentation , 2024, [pdf ] ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non‑Stationary Dueling Bandits Thomas Kleine Buening,Aadirupa Saha人工智能与统计国际会议(AISTATS),2023年,[PDF] minimax -bayes辅助学习Thomas Kleine Buening*,Christos dimitrakakis*,Hannes Eriksson*,Hannes Eriksson*,Hannes Eriksson*,Divya Grover*,Divya Grove*,Emilio Jorge*国际人工智能和人工智能和统计局(A)
2024年已经对人形机器人产生了兴趣。在第七机器人学习研讨会上,将在ICLR-2025举行,我们将超越人形体内体现,并问:我们离具有人级能力的机器人有多远?我们需要改进具体的学习,决策,感知和数据收集,以培训通常有身体能力的机器人,以鲁棒性地执行各种活动,例如烹饪或整理房屋 - 人们在不思考的情况下进行的活动?我们认为,当前机器人系统的许多弱点反映了一般AI方法和模型的缺点。因此,在本研讨会上,我们将寻求ICLR社区以机器人技术和机器人技术正交的部分,学术界和行业的科学贡献以及来自各种背景和职业阶段的参与者的不同观点。利用我们先前在机器人展示的经验,以符合时代的精神,我们将在研讨会的海报会议期间邀请几家人形机器人机器人公司展示其机器人。