David Furrer,纪律领导者,材料与过程工程,Pratt&Whitney高级研究员,通过数据和计算建模摘要材料科学和工程学使概率材料科学和工程能够支持概率的材料和工程,这是一门关键的工程学科,支持了世界上一些最复杂和有用的产品的设计,开发和实现。材料科学和工程学已经并且继续从完全经验,破坏和分析的完全经验的纪律发展为对可以控制和优化的基本基本行为机制的理解之一,以产生新的和更先进的能力。计算方法导致材料设计和优化在组件和系统设计活动中的最初设想的ICME方式的进一步集成。材料定义还通过使用计算模型以及相关的关键化学和结构参数及其对任何给定的谱系和相关质量控制系统的可变性水平而发展。材料数据捕获,分析和策划与基于物理行为模型的联系正在为概率材料科学和工程提供途径。这允许组件特定于位置的属性,这些属性不是一个简单的,单个经验驱动的最小值,而是基于材料的关键特征数据和基于模型的定义的一组具有关联概率的值。
先进制造材料中的化学-加工-微观结构关系 摘要 先进制造不断提高开发新技术并将其推向市场的效率、能力和成本效益,这在很大程度上得益于先进的计算工具(例如集成计算材料工程,ICME)和制造过程的自动化。这些进步,以及现代制造技术与传统铸造和锻造操作相比截然不同的材料加工条件,使得开发新材料成为必要,并需要开发基于物理的高精度模型来描述材料化学、加工和微观结构(和性能)之间的关系,这些模型通常基于基本的热力学和动力学原理。本演讲探讨了此类建模工具的一些最新进展,特别关注化学和加工条件如何影响凝固微观结构和随后的固态相变。具体而言,我们将讨论凝固模型(大致归类为界面响应函数)与增材制造过程中的材料响应和微观结构发展之间的联系。 传记 Eric A. Lass 博士是田纳西大学诺克斯维尔分校的助理教授。他于 2001 年获得密歇根理工大学材料工程学理学学士学位,2003 年获得 RPI 材料工程硕士学位,2008 年获得弗吉尼亚大学材料工程学博士学位。在来到诺克斯维尔之前,Lass 博士在马里兰州盖瑟斯堡的 NIST 工作了 10 年。他的研究兴趣广泛,包括热力学和动力学在先进材料微观结构演变和相变中的应用。他目前的项目包括 Fe、Ni 和 Al 基合金的增材制造、微观结构开发 Ni 超合金和耐火成分浓缩合金。他还是一名非常活跃的 TMS 成员,目前担任增材制造桥梁委员会主席。
增材制造 (AM) 通过提供快速制造能力,彻底改变了液体火箭发动机的部件设计。这为推进行业的开发和飞行计划带来了重大机遇,从而节省了成本和时间,并通过新设计和合金开发提高了性能。一个值得注意的例子是 GRX-810 氧化物弥散强化 (ODS) 合金,它是专门为极端温度而开发的。这种镍钴铬基合金是使用集成计算材料工程 (ICME) 技术创建的,旨在专注于具有出色温度和抗氧化性能的新型材料。GRX-810 合金利用 AM 工艺将纳米级氧化钇颗粒融入其整个微观结构中,从而实现了显着的增强。与传统的镍基高温合金相比,GRX-810 合金的抗拉强度提高了两倍,蠕变性能提高了 1,000 倍,抗氧化性能提高了两倍。 NASA 成功展示了使用 GRX-810 合金通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 工艺开发和制造部件。我们付出了大量努力来建模、评估冶金性能、开发热处理工艺、表征微观结构和确定机械性能。GRX-810 合金专为航空航天应用而设计,包括液体火箭发动机喷射器、预燃器、涡轮机和热段部件,可承受高达 1,100°C 的温度。开发这种合金的目的是缩小传统镍基高温合金和耐火合金之间的温度差距。本文对 GRX-810 合金与其他航空航天合金进行了全面的比较,讨论了其微观结构、机械性能、加工进步、部件开发和热火测试结果。此次研发的最终目标是提升 GRX-810 合金的技术就绪水平 (TRL),使其能够融入 NASA 和商业航空航天应用。
极端环境下下一代增材制造结构合金的机器学习 摘要 金属的性能和可加工性决定了汽车、飞机和建筑物中结构部件的设计和性能。增材制造 (AM) 的出现具有新的加工条件,并且有可能在体素尺寸分辨率下定制合金成分和微观结构,为合金设计开辟了新途径,以实现前所未有的性能。然而,要充分利用所有这些优势,需要转变设计理念并开发针对 AM 量身定制的新数值工具。在本次演讲中,我将介绍如何利用 AM 中的快速凝固和局部熔化,并结合 ICME 技术和机器学习 (ML) 工具,设计出一种创纪录的高强度、耐高温蠕变可打印铝合金,其性能优于传统加工的替代品。我将展示所提出的混合框架如何为发现下一代结构金属材料提供新的视角,从而显著改变从航空航天、建筑、基础设施、汽车和能源部门到微电子设备和生物医学植入物的工业应用。个人简介 S. Mohadeseh Taheri-Mousavi 于 2022 年 9 月加入卡内基梅隆大学担任助理教授,此前她曾在麻省理工学院机械工程系和材料科学与工程系联合担任博士后研究员。在此之前,她是布朗大学的博士后研究员。她在瑞士洛桑联邦理工学院获得博士学位,在伊朗沙里夫理工大学获得理学学士和理学硕士学位。她在布朗大学和麻省理工学院进行博士后研究期间获得了瑞士国家科学基金会早期和高级奖学金。 Taheri-Mousavi 小组结合机器学习技术开发了新型多尺度数值和分析框架,以发现由各种制造技术(尤其是增材制造)和在极端环境条件下生产的下一代结构合金。我们的材料信息学框架还可以指导实验以高效和智能的方式进行。
MS&T21 海报会议 周二 上午 & 下午 EH B 88 ACerS 基础科学部 Robert B. Sosman 讲座 周三 下午 B130 74 ACerS 科学与社会前沿 - Rustum Roy 讲座 周二 下午 B130 47 ACerS GOMD Alfred R. Cooper 奖会议 周二 下午 B231 55 Acers Navrotsky 固体实验热力学奖 周一 上午 A221 29 ACerS/EPDC:Arthur L. Friedberg 陶瓷工程教程和讲座 周一 上午 B130 13 增材制造 增材制造:工业应用的高级表征 原位和原位技术 周一 上午 A121 15 结构和材料特性 周一 下午 A121 33 按需口头报告 周五 上午 VMR 1 102 增材制造:合金设计以开发新原料材料 III 建模和实验 周一 上午 A111 16 按需口头报告 周五 上午 VMR 1 102 增材制造:大型金属增材制造海报会议 周二 下午 EH B 96 先进制造工艺 周三 上午 A114 63 微观结构、性能和性能:特性和模拟 周三 下午 A114 76 增材制造:水腐蚀和高温氧化的机理及缓解措施 增材制造部件的腐蚀评估 I 周三 上午 A112 63 增材制造部件的腐蚀评估 II 周三 下午 A112 77 增材制造:钛基材料的加工、微观结构和材料性能 第一场 周一 上午 A120 16 第二场 周一 下午 A120 33 第三场 周二 下午 A120 51 海报会议 周二 下午 EH B 96 第四场 周三 上午 A120 64 按需口头报告 周五 上午 VMR 1 103 金属增材制造:设备、仪器仪表和现场过程监控 过程监控和建模方法 周二 下午 A121 49 成像和传感方法 周三 上午 A121 62 新型仪器 周三 下午 A121 75 按需口头报告 周五 上午 VMR 1 102 金属增材制造:ICME 差距:支持认证的数据材料特性和验证数据模拟需求:支持认证的数据材料特性和验证数据 周一 上午 A114 15