学生纸竞赛,美国医学信息学协会(AMIA)年度研讨会,2022年。获胜者和亚军,通知海报比赛,2022年。获胜者,应用最佳纸质比赛,第17届信息挖掘与决策分析研讨会,2022年。决赛入围者,信息挖掘最佳纸质竞赛奖(学生曲目),2022年。决赛入围者,信息瓦格纳奖,2021年。最佳纸张奖(荣誉奖),ICML时间系列研讨会,2021。最佳第16页的最佳论文告知有关数据挖掘和决策分析的研讨会,决赛入围者,2021年。第15篇最佳论文将有关数据挖掘和决策分析的研讨会,第二名,2020年。告诉您做得好或参加社交良好的纸质比赛,第2位,2019年。通知QSR最佳学生纸竞赛,决赛入围,2019年。向ICS最佳学生纸竞赛提供信息,亚军,2019年。最佳学生纸奖,IEEE ICASSP会议,2019年。通知社交媒体分析最佳学生造纸比赛,决赛入围,2018年。通知QSR最佳学生纸竞赛,决赛入围,2018年。IMA研讨会上的最佳海报奖,《复杂性预测》,2018年。告知QSR最佳学生纸竞赛,决赛入围,2017年。最佳学生纸奖,IEEE ICASSP会议,决赛入围,2007年。最佳学生纸张奖,IEEE ASILOMAR会议,2005年,第1名。编辑委员会会员资格
现代机器学习彻底改变了各种领域的问题解决,包括软件工程,科学发现和医学。随着语言,图像和多模式数据的基础模型的进步,最终用户可以完成复杂的任务,否则将需要大量的专业知识和资源。然而,尽管有这些显着的进步,但深度学习仍面临许多局限性。重要的是,它在需要结构,逻辑和计划的问题上挣扎 - 传统符号推理表现出色的地方。在他的2011年经典思维中快速慢,卡尼曼将人类的认知描述为与神经网络类似于神经网络的直观,关联的“系统1”与逻辑上的“系统2”之间的相互作用。将这两个范式的互补优势结合到统一系统中是人工智能的基本挑战。Neurosymbolic编程是一个有希望的新兴范式,旨在应对这一挑战。我的研究重点是神经符号编程的基础,即跨越正式的语义,语言设计和学习算法,以及其在涉及自然语言推理,计算机视觉和多模式整合的现实世界中的应用。为此,我追求了两个互补的研究方向:扇贝,通用神经成像节目的框架,发表在(Neurips 2021),(PLDI 2023),(PLDI 2023),(AAAI 2024)中,以及在基础中的基础和趋势(FNT 2024)的基础和趋势(FNT 2024)中的邀请专着和趋势;以及一系列逐渐高级的应用,以增强推理的复杂性并整合了越来越多样化的模式,这些方式发表在(ICML 2020),(ACL 2023)和(TR 2024)中。
邀请在2024年12月AI的全球问题上关于AI的全球问题的神经访问研讨会2024年12月在2024年12月的开放问题,2024年10月CIFAR DEEP LEAD LEAVY SUMMLE暑期夏季学校2024年7月,多伦多大学学生AI学生AI大学学生AI 2023年1月2023年1月1月1月的剑桥大学cambridge University computational and Biological Lab Scienter 2022年多伦多大学学校(高中)研究俱乐部(远程)2022年4月神经研讨会:编程语言和神经成像系统(遥远)2021年12月Schwartz-riesman Institute Institute研讨会系列(远程)2021年11月)ICCV ICCV ICCV关于Neural Architect on Neural Architect:现在和未来的(远程(遥远)2021年10月20日至2021年10月20日Keynote:K. ICML Workshop on Time Series (remote) July 2021 Oxford University, StatML Centre for Doctoral Training Seminar (remote) July 2021 Centre for Mathematics and Algorithms for Data, University of Bath (remote) July 2021 Microsoft Research AutoML Lecture Series (remote) May 2021 Flatiron Institute, Center for Computational Mathematics May 2021 ICLR Workshop on Deep Learning for Simulation (remote) April 2021 University College伦敦,DeepMind/Ellis CSML研讨会系列(遥控)2021年2月,贝叶斯深度学习(远程)Neurips Europe Meetup 2020年12月Neurips研讨会:超越反射(远程)2020年12月
1。NOWISIS数据如何影响学习的接触动态?H.J.Terry Suh,M。Simchowitz,T。Pang,R。Tedrake IROS 2023研讨会:学习符合基于模型的操纵方法,并掌握2。与梯度打击不确定性:通过扩散得分与H.J.Terry Suh,G。Chou,H。Dai,L。Yang,A。Gupta,R。Tedrake机器人学习会议(CORL),2023 3.种子:6D中的串联弹性末期效果用于Visuotactile工具使用H.J.Terry Suh,N。Kuppuswamy,T。Pang,P。Mitiguy,A。Alspach,R。Tedrake国际智能机器人和系统会议(IROS),2022年,4。可区分的模拟器会提供更好的政策梯度吗?H.J.Terry Suh,M。Simchowitz,K。Zhang,R。Tedrake国际机器学习会议(ICML),2022年,Long Talk,杰出纸张奖5.在策略优化中使用可区分的模拟器进行访问量填充的操作H.J.Terry Suh,M。Simchowitz,K。Zhang,T。Pang,R。Tedrake ICRA 2022车间:RL操纵6。线性模型在对象桩操纵中的线性模型的令人惊讶的有效性H.J.Terry Suh,R。Tedrake算法XIV(WAFR),347-363,2020 7。多模式混合运动H.J.Terry Suh,X。Xiong,A。Singletary,A.D。Ames,J.W。 Burdick IEEE国际智能机器人与系统会议(IROS),2020 8。 朝着面向人形的运动写作A. Stoica,H.J。 Terry Suh,S.M。Terry Suh,X。Xiong,A。Singletary,A.D。Ames,J.W。Burdick IEEE国际智能机器人与系统会议(IROS),2020 8。朝着面向人形的运动写作A. Stoica,H.J。Terry Suh,S.M。Terry Suh,S.M。Hewitt,S。Bechtle,A。Gruebler,Y。IwashitaIEEE国际系统,人与控制论的国际会议(SMC),2017年
[1] Shuo Xu,Liyuan Hao,Guancan Yang,Kun Lu和Xin An。基于主题模型的框架,用于检测和预测新兴技术。技术预测和社会变革,第1卷。162,p。 120366,2021。[2] Xing Yi和James Allan。信息检索的Uti-Lizing主题模型的比较研究。在Mohand Boughanem,Catherine Berrut,Josiane Mothe和Chantal Soule-Dupuy,编辑中,信息检索的进步,pp。29–41,柏林,海德堡,2009年。Springer Berlin Heidel-Berg。[3] Shixia Liu,Michelle X. Zhou,Shimei Pan,Yangqiu Song,Weihong Qian,Weijia Cai和Xiaoxiao Lian。tiara:主动,基于主题的视觉文本摘要和分析。acm trans。Intell。 Syst。 技术。 ,卷。 3,编号 2,2012年2月。 [4] David Blei,Andrew Ng和Michael Jordan。 潜在的dirich-让分配。 在T. Dietterich,S。Becker和Z. Ghahra mani中,编辑,《神经信息处理系统的进步》,第1卷。 14。 MIT出版社,2001。 [5] Yishu Miao,Edward Grefenstette和Phil Blunsom。 涵盖神经变异性推断的离散潜在主题,2017年。 [6] Akash Srivastava和Charles Sutton。 主题模型的自动编码变量推断,2017年。 [7] Maarten Grootendorst。 bertopic:基于类的TF-IDF程序的神经主题建模,2022。 [8] David M. Blei和John D. La效应。 动态主题模式。Intell。Syst。技术。,卷。3,编号2,2012年2月。[4] David Blei,Andrew Ng和Michael Jordan。潜在的dirich-让分配。在T. Dietterich,S。Becker和Z. Ghahra mani中,编辑,《神经信息处理系统的进步》,第1卷。14。MIT出版社,2001。[5] Yishu Miao,Edward Grefenstette和Phil Blunsom。涵盖神经变异性推断的离散潜在主题,2017年。[6] Akash Srivastava和Charles Sutton。主题模型的自动编码变量推断,2017年。[7] Maarten Grootendorst。bertopic:基于类的TF-IDF程序的神经主题建模,2022。[8] David M. Blei和John D. La效应。动态主题模式。在第23届机器学习国际会议论文集中,ICML '06,p。 113–120,纽约,纽约,美国,2006年。计算机协会。[9] c´edric f´evotte和j´erˆome idier。算法,用于beta-Divergence,2011年。 [10] Silvia Terragni,Elisabetta Fersini,Bruno Giovanni Galuzzi,Pietro Tropeano和Antonio Candelieri。 八八张:对主题模型进行组合和优化很简单! 在Dimitra Gkatzia和Djam´e Seddah中,编辑,第16届会议论文集算法,用于beta-Divergence,2011年。[10] Silvia Terragni,Elisabetta Fersini,Bruno Giovanni Galuzzi,Pietro Tropeano和Antonio Candelieri。八八张:对主题模型进行组合和优化很简单!在Dimitra Gkatzia和Djam´e Seddah中,编辑,第16届会议论文集
1。“有意义的记忆的随机树模型”,Weishun Zhong,Tankut Can,Atonis Georgiou,Ilya Shnayderman,Mikhail Katkov,Misha Tsodyks,Arxiv,Arxiv:2412.01806,Review 2。“分层工作记忆和新的魔术数字”,Weishun Zhong,Mikhail Katkov,Misha Tsodyks,Arxiv:2408.07637,评论3。“量子神经网络作为量子信息解码器的优势”,Weishun Zhong,Oles Shtanko,Ramis Movassagh,Arxiv:2401.06300,Review 4。“多体局部隐藏生成模型”,Weishun Zhong,Xun Gao,Susanne Yelin,Khadijeh Najafi,Arxiv:2207.02346;物理评论研究6.4(2024):043041。5。“体重分配受限的学习理论”,Weishun Zhong,Ben Sorscher,Daniel D Lee,Haim Sompolinsky,Arxiv:2206.08933;神经2022 6。“量化多体学习远离代表学习的平衡”,Weishun Zhong*,Jacob M Gold*,Sarah Marzen,Jeremy L England,Nicole Yunger Halpern,Arxiv:2001.03623;科学报告11.1(2021):1-11 7。“通过多体系统学习学习”,Weishun Zhong*,Jacob M Gold*,Sarah Marzen,Jeremy L England,Nicole Yunger Halpern,Arxiv:2004.03604; ICML研讨会ML科学发现的可解释性(2020)8。“连续吸引子的非平衡统计力学”,Weishun Zhong,Zhiyue Lu,David J. Schwab和Arvind Murugan,Arxiv:1809.11167;神经计算(2020)32(6)9。“仔细观察β -vae中的分离”,Harshvardhan Sikka*,Weishun Zhong*,Jun Yin,Cengiz Pehlevan,Arxiv:1912.05127;第53届ASILOMAR信号,系统和计算机会议(2019)10。“宏观分子自组装中的联想模式识别”,Weishun Zhong,David J. Schwab和Arvid Murugan,Arxiv:1701.01769; J Stat Phys(2017)167:806 11。“ Schr̈Odinger Schatemes的纯种C理论”,James T. Liu和Weeshun Zhong,Arxiv:1510.06975; JHEP 1512(2015)179
•朝着局部关注和流动匹配风格的校正的长期推出:额叶聚合PDES中的一个例子。Pengfei Cai,Sulin Liu,Qibang Liu,Philippe Geubelle,Rafael Gomez-Bombarelli。(2024)。在ML关于物理科学的ML的Neurips 2024研讨会上介绍。预印本。•使用可区分的模拟学习额叶聚合PDE的治疗动力学。Pengfei Cai,Qibang Liu,Philippe Geubelle,Rafael Gomez-Bombarelli。(2024)。ICML 2024 AI科学研讨会;关于数据驱动和可区分模拟,替代物和求解器的神经研讨会。预印本。•基于额叶聚合制造中形态学模式设计的单变量变异自动编码器。Qibang Liu,Pengfei Cai,Diab Abueidda,Seid Koric,Rafael Gomez-Bombarelli,Philippe Geubelle。(2024)。提交:应用机制和工程中的计算机方法。预印本。•具有准确的混合功能的无机化合物的计算的拉曼光谱数据库。Yuheng Li,Damien K. J. Lee,Pengfei Cai,Ziyi Zhang,Prashun Gorai,Pieremanuele Canepa。 (2024)。 科学数据。 纸链接。 •从“无特征”光吸收光谱中鉴定化学成分:机器学习预测和实验验证。 Tiankai Chen*,Jiali Li*,Pengfei Cai,Qiaofeng Yao,Zekun Ren,Yixin Zhu,Saif Khan,Jianping Xie,Xiaonan Wang。 (2023)。 纳米研究。 纸链接。 (2022)。Yuheng Li,Damien K. J. Lee,Pengfei Cai,Ziyi Zhang,Prashun Gorai,Pieremanuele Canepa。(2024)。科学数据。纸链接。•从“无特征”光吸收光谱中鉴定化学成分:机器学习预测和实验验证。Tiankai Chen*,Jiali Li*,Pengfei Cai,Qiaofeng Yao,Zekun Ren,Yixin Zhu,Saif Khan,Jianping Xie,Xiaonan Wang。(2023)。纳米研究。纸链接。(2022)。•通过第一原则理解和机器学习加速了近红外II分子荧光团的设计。Shidang Xu*,Pengfei Cai*,Jiali Li,Xianhe Zhang,Xianglong Liu,Xiaonan Wang,bin liu。ChemRXIV预印本(实验验证正在进行)。预印本。•聚集时机器学习辅助准确预测分子光学性能。Shidang Xu*,小刘*,Pengfei Cai,Jiali Li,Xiaonan Wang,bin liu。(2022)。高级科学。纸链接。•通过贝叶斯搜索进行第一原则模拟的贝叶斯搜索自我提出的光敏剂发现系统。Shidang Xu*,Jiali li*,Pengfei Cai,小刘,本·刘,小王。(2021)。美国化学学会杂志。纸链接。
•将语言模型重新定位为嵌入模型:查找Compute-Timepimal配方; A. Ziarko,A。Jiang,B。Piotrowski,W。Li,M。Jamnik,P。Milo。神经2024•较大,正规化,乐观:计算和样品有效连续控制的缩放; M. Nauman,M。Ostaszewski,K。Jankowski,P。MiLo's,M。Cygan;神经2024(聚光灯)•微调加强学习模型秘密地忘记了缓解问题; M. Wolczyk,B。Cupial,M。Ostaszewski,M。Bortkiewicz,M。Zajac,R。Pascanu,L。Kucinski,P。Milo。 ICML 2024(聚光灯)•Magnushammer:一种基于变压器的前提选择方法; M. Miku La,S。Antoniak,S。Tworkowski,A。Jiang,J。PengZhou,ch。Galias,S。S.Syoceanu,H。Michalewski); ICRA 2020Galias,S。S.Syoceanu,H。Michalewski); ICRA 2020szegedy,L。Kuci´nski,P。Milo lo。,Y。Wu; ICLR 2024•聚焦变压器:上下文缩放的对比训练; S. Tworkowski,K。Staniszewski,M。Pacek,Y。Wu,H。Michalewski,P。Milo。神经2023•快速而精确:通过自适应子搜索调整计划范围; M. Zawalski,M。Tyrolski,K。Czechowski,D.Stachura,P.Piekos,T。Odrzygozdz,Y。Wu,L。Kucinski,P。Milo。 ICLR 2023(值得注意的前5%)•连续世界:持续强化学习的机器人基准; M. Wo Lczyk,M。Zajac,R。Pascanu,L。Kuci´nski,P。Milo; Neurips 2021•亚目标搜索复杂的推理任务; K. Czechowski,T。Odrzyg´o´zd´z,M。Zbysi´nski,M。Zawalski,K。Olejnik,Y。Wu,L。Kuci´nski,P。Milo lo; Neurips 2021•基于模型的加固学习(与L. Kaiser,M。Babaeizadeh,B。Osi´nski,R。Campbell,K。Czechowski,D。Erhan,C。Finn,P。Kozakakowski,S.Levine,S.Levine,S.Levine,S.Levine,R.Sepassi,R.Sepassi,G。Tucker,G.Tucker,H。Michalewski); ICLR 2020(聚光灯)•基于模拟的实用自主驾驶的增强加固学习(与B. Osi´nski,A。Jakubowski,P。Ziecina,P。Ziecina,CH。
学习使用生成先验模拟物理从稀疏传感器数据预测由偏微分方程 (PDE) 控制的流体系统是计算物理学中的一项重大挑战。PDE 是模拟各种物理现象的基础,但它们的解析解往往难以解决,尤其是在复杂的现实场景中,例如由 Navier-Stokes 方程描述的湍流。这些挑战因从稀疏或嘈杂的观测中重建高维解的难度而加剧。自 2023 年以来,我一直专注于通过将 AI 技术集成到 PDE 求解中来应对这一挑战,特别是利用扩散模型作为适合 PDE 性质并能够学习物理分布模式的强大生成模型。扩散模型在模拟流体动力学固有的随机过程方面表现出色,这使得它们特别适合捕捉湍流的混沌行为。它们能够通过基于能量的建模学习迭代 PDE 先验,这使它们即使在数据有限的情况下也能近似复杂的 PDE 解。通过应用物理信息约束,扩散模型可以迭代地解决逆问题,同时确保其逐渐收敛的解遵循物理定律,从而弥合传统 PDE 求解与现代科学 AI 方法之间的差距。这种方法不仅可以在涉及湍流或噪声数据的场景中做出准确而稳健的预测,而且还凸显了 AI 在推进对 PDE 治理系统的科学理解方面的潜力。作为项目负责人,我开发了一个使用物理信息引导采样的框架,该框架结合了观测损失和 PDE 函数损失来强制执行物理约束,从而能够重建静态 PDE 的材料属性(系数)和流动属性(解)。对于动态 PDE,即使观测非常稀疏,该框架也可以重建关键时间步骤(例如初始状态和最终状态)的流动属性。通过对各种类型的 PDE 进行大量实验,我证明了 DiffusionPDE 具有几个优点:1)它可以同时解决解(或最终状态)预测和参数(或初始状态)估计任务,2)即使使用非常有限的(≈ 3%)观测,它也能准确地恢复缺失数据,这对于实际应用至关重要,3)它展示了使用单一生成模型有效解决复杂数学方程的潜力。我的第一作者作品 [ 1 ] 被接受在 ICML 2024 的 AI for Science 研讨会上进行口头报告。在此基础上,我通过将我们的引导采样方法与无分类器引导(CFG)进行比较,进一步评估了该方法的性能。我们的结果表明,引导采样优于 CFG,因为它更直接地应用物理约束。该研究[2]已被 NeurIPS 2024 接受。
C88 @liu,Z.,Dou,G.,@tan,Z.,Tian,Y.,Jiang,M。“通过机器学习,迈向更安全的大型语言模型”,在计算语言学协会年度会议(ACL)的年度会议中,2024年,2024年。C87 Sun,L。和许多其他包括Jiang,M的M。“ Trustllm:大语言模型中的可信赖性”,在国际马克内斯学习会议论文集(ICML),2024年。(位置纸)C86 Qin,R.,Xia,J.,Jia,Z.,Jiang,M.,Abbasi,A.,Zhou,P.,Hu,J.,Shi,Shi,Y。“在设计自动化会议会议论文集(DAC),2024年。C85 @Wu,Z.,Jiang,M.,Shen,C。“指导大型语言模型以识别和忽略无关紧要的条件”,在计算语言学协会(NAACL)的年度会议论文集,2024年。C85 @Wu,Z.,Jiang,M.,Shen,C。“指导大型语言模型以识别和忽略无关紧要的条件”,在计算语言学协会(NAACL)的年度会议论文集,2024年。C84 *Kuang,Y.,Lin,H.,Jiang,M。“ OpenFMNAV:通过视觉语言基础模型进行开放设定的零射击对象导航”,在北美北美分会的北美北美会议的结果(NAACL)(NAACL)(NAACL)的发现中C83 @Wu,Z.,Jiang,M.,Shen,C。“在AAAI人工智能会议论文集(AAAI),2024年,(接受率23.8%= 2342/9862)C82 @yu,M.,@zhang,Z., @yu,W.,Jiang,M。“比较推理的预培训语言模型”(口头演示)C81 @yu,W.,Jiang,M.,Clark,P.,Sabharwal,A。(海报)“ IFQA:一个用于反事实前提下回答的开放域问题的数据集”,在自然语言处理经验方法会议(EMNLP)中的研究中,2023年。(Selected for Outstanding Paper Award ) C80 @Zhang, Z., Wang, S., @Yu, W., Xu, Y., Iter, D., @Zeng, Q., Liu, Y., Zhu, C., Jiang, M. “Auto-Instruct: Automatic Instruction Generation and Ranking for Black-Box Language Models”, in Findings of Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.c79 @liu,G.,@inae,E.,@zhao,T.,Xu,J.,Luo,T。,Jiang,M。“以数据为中心的数据以数据为中心的图形学习具有扩散模型”(ACCEPTAS率26.1%= 3222/12343)C78 @liu,G.,@zhao,t.,@inae,E.,Luo,T.(接受率22.1%= 313/1416)C77 @ziems,N., @yu,W。,@zhang,Z.C76 @liu,G.,Jiang,M。“解释与反事实的AI信息的入侵检测”,在IEEE国际委员会通信会议论文集(InfoCom),2023年。