组成 ICRF 的超大质量黑洞 在 2022 年 6 月《天体物理学杂志增刊》上发表的一篇新论文中,美国海军天文台的天文学家 Remington Sexton 博士领导了一个新的目录,该目录列出了组成国际天体参考框架 (ICRF) 的活动星系核 (AGN) 的基本光谱特性。 [1] 自 20 多年前采用以来,ICRF 已发展到包括数千个具有非常长基线干涉 (VLBI) 观测的河外射电源,这使得世界各地的多个射电望远镜可以充当单个射电天文台。 ICRF 目前已是第三次实现 (ICRF3),它提供了一个前所未有的精度天体参考框架,可用于天体测量、大地测量和导航等关键领域。 然而,矛盾的是,除了它们的位置和射电亮度之外,人们对这些物体的天体物理性质知之甚少。物理信息的缺乏阻碍了许多天体物理学研究对 ICRF 和新的光学天体参考系 Gaia-CRF 之间位置偏移原因的探究,而这也是一项关键的研究重点。一种可能性是,这些巨大的光学-射电偏移可归因于射电喷流,这种射电喷流可以在射电波长下表现出扩展的发射,或者偏离了用 Gaia 测量到的光学光心,对于 AGN 而言,这对应于中央超大质量黑洞周围的吸积盘。Sexton 博士说:“ICRF 现在正处于这样一个阶段,对这些物体基本性质的物理理解将有助于提高未来 ICRF 实现的准确性和精确度。”利用斯隆数字巡天 (SDSS) 提供的庞大的可用光谱数据库,确定了近 900 个 ICRF3 物体的重要物理特性,例如红移、黑洞质量和发射线运动学,其中超过 1,000 个物体具有 AGN 光谱类型分类。该星表采用了最先进的贝叶斯光谱拟合算法,可以同时拟合所有感兴趣的光谱参数,以及稳健的不确定性估计 [2],该算法由 USNO 专门为研究组成 ICRF3 的低红移和高红移活动星系核而开发。由于黑洞吸积过程在短时间内发生,活动星系核的辐射变化很大,因此需要不断监测组成 ICRF 的物体,以防可能发生的变化
使用绝对天体测量的国际天体参考框架 在 2023 年 2 月出版的《天文学杂志》 [1] 上发表的一篇新论文中,美国天文学家 David Gordon 领导的团队海军天文台报告首次在国际天文学联合会的官方天体参考框架中精确定位了我们银河系中心的黑洞。位于我们银河系中心的是一个超大质量黑洞,被称为人马座 A* (Sgr A*),这是一个强大的射电源,自 1950 年代初以来就为人所知和研究。银河平面中的气体和尘埃在光谱的可见部分遮蔽了它,但对其附近恒星运动的红外观测表明,它的质量约为 400 万个太阳质量 [2] 。最近,事件视界望远镜 [3] 拍摄到了它的影子。但尽管对它进行了许多研究,但要准确在天空中定位它却非常困难。准确定位人马座 A* 相对于天体参考系中其他源的位置,对于定义银河系坐标系和研究银河系结构、运动学和动力学,以及在无线电、毫米波和红外线下进行研究和图像之间的配准都非常重要。之前对其位置的最佳估计是使用一种称为“差分”天体测量的无线电干涉测量技术进行的,其中它的天体坐标是相对于一个或两个附近的校准器无线电源进行估计的。然而,所使用的校准源的坐标仅精确到几十毫角秒 (mas),并且可能会随时间略有变化,导致 Sgr A* 的坐标也存在类似的不确定性。但现在,一项由美国海军天文台天文学家领导的新研究发表在 2023 年 2 月的《天文学杂志》[1] 上,首次确定了 Sgr A* 的精确位置以及它在国际天文学联合会官方天体参考框架 ICRF3 [4] 中的自行。ICRF3 是国际天体参考框架的第三个实现,是一个由甚长基线干涉测量 (VLBI) 确定的 ~4500 个紧凑类星体射电源的精确坐标组成的天体参考框架。过去几年,美国海军天文台的 David Gordon 和同事南非射电天文台的 Aletha de Witt 以及喷气推进实验室的 Christopher Jacobs 一直在使用名为 VLBI“绝对”天体测量的射电干涉测量技术对人马座 A* 进行观测,该技术通过
