1。简介。内部扩散限制聚集(IDLA)是Meakin和Deutch [33]于1986年为化学应用引入的随机增长模型,然后在数学框架中,由Diaconis和Fulton在[16]中。在此模型中,通过从某个源点开始的随机步行访问的curlant聚集物中添加到汇总的第一个站点,从而递归定义了聚集体。经典IDLA模型在Z D中构建如下。我们以0 =开始; 。在步骤n,一个简单的符号随机步行从原点0开始,直到它退出电流骨料A n-1,例如在某个顶点z处,该顶点Z添加到n-1中以获取a n = a n = a n-1∪{z}。在经典的IDLA模型(以及本文)中,该单词粒子用于参考随机步行,该随机步行在退出当前汇总a -1时停止,并在新的顶点z上安顿下来。第一个定理是由Lawler,Bramson和Griffeath在[27]的经典IDLA模型中建立的。它断言骨料n(适当归一化时)会导致A.S.随着北部的影响,到达欧几里得球(W.R.T.最多线性的极限形状)。从那时起,几篇论文(由Lawler [26],Asselah和Gaudil-Lière[2,3,4]和Jerison,Levine和Shefinfield [22,23,24])改善了在2 d d d d d d d d d d d d d d d d d和Sublogarithmic in Eaverplogarithmic中的爆发的界限。最近,已经考虑了此问题的许多变体。In particular, IDLA on discrete groups with polynomial or exponential growth have been studied in [ 10 , 11 ], on non-amenable graphs in [ 20 ], with multiple sources in [ 29 ], on supercritical percolation clusters in [ 17 , 40 ], on comb lattices in [ 5 , 21 ], on cylinder graphs in [ 25 , 30 , 41 ], con- structed with drifted random walks in [ 31 ] or在[7]中具有统一的起点。
EPSRC工业博士学位景观奖(IDLA):使用配方科学和流变学的结构化液体的数值模型的开发和验证:净零可持续产品。Mark Simmons教授和Alessio Alexiadis化学工程学院博士,伯明翰联合利华大学,阳光港口税收税收津贴19,795英镑,每年5,000英镑的工业增长津贴,以及支付的费用。项目描述:联合利华集团是家庭,个人护理和食品的国际制造商,目的是使可持续的生活司空见惯。该公司拥有400多个品牌,这些品牌在190多个国家/地区出售,每年的营业额在2022年为600亿欧元。包含复杂结构液体的产品是该产品组合的关键组成部分,例如洗发水和头发护发剂(鸽子,lux,sunsilk)。要满足英国气候目标,迫切需要采用新颖的科学方法来实现产品和工艺的快速重新重新制定,以减少制造和使用过程中的温室气体(GHG)排放和水。联合利华已承诺从2039年到销售点从其所有产品中实现零净排放。由于越来越多的成分转移到可持续的原料,以及制造此类成分所需的碳足迹所需的碳足迹,因此需要实现这种创新率。最初的焦点将放在含有层状凝胶网络(LGN)的浓缩产品上。这些结构建立了粘度,并有助于对消费者满意的产品的整体感觉和流动。学生将这个博士学位项目通过测试和开发新的数值框架来促进这一目标,该框架可以在计算机实验中进行测试,以测试新的配方及其针对实验的微观结构,以减少时间和浪费的最终目标,从而将新的配方带给市场。Composed of surfactants and long chain fatty alcohols, the structural features of LGNs are built over three orders of magnitude, from self-assembled repeat-unit bilayer structures at the nanometre- scale, to stacking of these into intermediate mesostructures to form higher order sheet-like agglomerates with dimensions in the order of tens to hundreds of micrometres, which twist, fold and interlock with other sheets.该项目旨在通过模拟(在计算机中)和实验室(体外)实验的组合使用无网状数值方法来验证和进一步开发微观结构的初步模型。候选人将熟悉它们,并在配方和模拟中提出低复杂性实验,以创建能够预测复杂液体的流变特性的能力,并着重于层状凝胶网络。学生将从S&T护发能计划中与联合利华队的互动中受益,并将在其博士项目中练习项目管理,并通过常规团队和更广泛的社区更新来介绍他们的工作。