Axient 总部位于阿拉巴马州亨茨维尔,三十多年来一直为联邦政府提供一流的服务和解决方案。客户之所以选择 Axient,是因为他们知道可以信任我们的员工并信赖我们的表现。我们在阿拉巴马州、田纳西州、佛罗里达州、加利福尼亚州、新墨西哥州、科罗拉多州和国家首都地区拥有 2200 多名员工和办事处,为客户提供本地专业知识和项目管理,这意味着响应时间更快,合作伙伴更容易联系。Axient 已获得以下认证:ISO 9001:2015、AS9100 Rev D、CMMI-DEV 成熟度级别 3,并拥有 DCMA 采购系统、DCMA 财产系统和 DCAA 会计系统。我们成功的历史归功于我们的核心理念:将使命和客户放在第一位,授权我们的项目领导者,并通过提供增值、面向使命的服务和解决方案为客户消除成功障碍。
2024 2024 年材料研究学会春季会议。基于光合细菌的生物混合材料用于能源和传感。西雅图(美国)——受邀演讲。2023 圣保罗大学(巴西)。半人工光合作用的生物混合界面:从仿生聚合物到纳米材料。圣保罗化学研究所(巴西)——受邀研讨会。2022 智利圣地亚哥大学(智利)。用于半人工光合作用的细菌/电极界面。智利圣地亚哥化学和生物学学院(智利)——全体会议讲座。2022 克雷塔罗自治大学(墨西哥)。从基于光合细菌的光电极到生物传感器。在线——受邀研讨会。 2022 CIMTEC 2022 第九届新材料论坛。细菌光合作用的电化学领域。佩鲁贾(意大利)——受邀演讲。2022 意大利纳米技术研究所国家研究委员会。生物混合电化学系统中的细菌-电极相互作用。线上——受邀研讨会。2021 第 240 届电化学学会会议。针对水质监测生物电化学系统的可持续性。虚拟会议——受邀演讲。2021 第 19 届欧洲光生物学学会大会。用于环境监测的生物混合系统中的光合实体。虚拟会议——受邀演讲。2021 北卡罗来纳州立大学(美国)。半人工光合作用:了解生物混合系统中的细胞外电子转移。线上——受邀研讨会。 2020 加利福尼亚大学欧文分校(美国)。半人工光合作用:从理解到人工调节生物体内的光激发电子收集。在线 - 受邀研讨会。
活动口头报告 14:00 16:00 查看报告议程 A1 研讨会 - 隐形站导航 S8 -Jhon Alexander Toro MEDTRONIC 16:00 18:00 教室 3 塔 1 第三届国际生物医学工程和生物工程大会开幕式 18:00 19:00 西方自治大学北翼 4 楼 Lile 礼堂
IERE 主席致辞 我诚挚邀请大家参加 2024 年 11 月 19 日至 22 日在印度尼西亚巴厘岛举行的第 24 届 IERE 大会和 PLN 印度尼西亚论坛。本次活动由 PLN 联合主办,主题为“分布式发电以提高可再生能源渗透率”。 考虑到近年来全球气温上升,加快实现碳中和能源转型的努力至关重要。 电力行业最重要的措施是尽可能多地利用可再生能源。然而,可再生能源发电与传统能源相比具有完全不同的特点,例如间歇性发电、通过逆变器连接到电网以及分散到许多小地方。随着可再生能源发电的快速增长,我们在控制电网方面面临着困难。电压控制变得困难,尤其是在本地电网中。随着传统同步发电机的衰落,由于惯性不足,频率和稳定性控制将变得困难。世界各地正在进行大量研究和开发以解决这些问题,并提出了各种措施。其中一些措施已通过智能城市和智能电网项目得到展示。然而,我们仍有许多问题需要解决,不仅从技术角度,而且从经济和环境角度。在这个论坛上,将讨论分布式发电的各个方面,包括分布式发电技术、微型智能电网、对传统能源的影响、监管和融资。我们还将举行小组讨论,邀请该领域的选定专家参加。各国的情况各不相同,解决这些问题的方法和策略也各不相同。这就是为什么交换信息和见解以及世界各地专家之间的合作很重要的原因。在这个论坛上,我们旨在促进与会者之间的讨论,并提供各种相互讨论的机会。请参加论坛并加入这场全球讨论。除了论坛之外,您还可以参加第 24 届 IERE 大会。届时将介绍 IERE 的最新活动和研究项目。IERE 是一个独特的全球平台,可以交流电力领域的技术专长和知识。我希望大会将成为了解 IERE 的好机会,并鼓励您参与未来的活动。印度尼西亚是一个快速发展的国家。稳定供应电力以满足日益增长的需求以及减少温室气体排放是不可避免的。因此,许多可再生分布式发电正在迅速安装并接入电网。本次活动的联合主办方 PLN 正在积极寻求创新以应对这种情况。因此,印度尼西亚是举办此次活动的绝佳地点。在巴厘岛,我们可以享受美丽的自然风光和轻松的氛围,使其成为坦诚讨论各种问题的好地方。我坚信这次活动将使大家受益匪浅,并有助于进一步利用分布式发电。最后,我要向 PLN 表示最深切的感谢和赞赏,感谢他们共同主办和组织了这次 IERE 大会和 PLN 印度尼西亚论坛。我期待着在印度尼西亚巴厘岛与你们见面并讨论。 MINO Yoshiaki IERE 主席 CRIEPI,日本
• 这意味着您的所有医疗保健需求(从 PCP 和紧急护理到处方药等)都将由我们 Select Plan 医院和医师团体网络中的提供商满足。 • 较小的网络使我们能够以低保费的形式将节省的费用转嫁给您,帮助您控制成本而不牺牲护理质量。 • 虽然这些计划仅适用于哈里斯县居民,但会员可以在 Ultra Select Plan 提供商所在的任何地方获得护理。
由 Cigna Health and Life Insurance Company 或其附属公司提供。产品可用性可能因地点和计划类型而异,并可能发生变化。所有团体健康保险政策和健康福利计划均包含排除和限制。如需了解费用和承保范围的完整详情,请联系您的 Cigna 代表。所有 Cigna 产品和服务均由 Cigna Corporation 的运营子公司独家提供或通过其提供,包括 Cigna Health and Life Insurance Company (CHLIC)、Cigna Behavioral Health, Inc. 以及 Cigna Health Corporation 的 HMO 或服务公司子公司,包括 Cigna HealthCare of Arizona, Inc.、Cigna HealthCare of California, Inc.、Cigna HealthCare of Colorado, Inc.、Cigna HealthCare of Connecticut, Inc.、Cigna HealthCare of Florida, Inc.、Cigna HealthCare of Georgia, Inc.、Cigna HealthCare of Illinois, Inc.、Cigna HealthCare of Indiana, Inc.、Cigna HealthCare of St. Louis, Inc.、Cigna HealthCare of North Carolina, Inc.、Cigna HealthCare of New Jersey, Inc.、Cigna HealthCare of South Carolina, Inc.、Cigna HealthCare of Tennessee, Inc. (CHC-TN) 和 Cigna HealthCare of Texas, Inc. 保单形式:OK - HP-APP-1 等 (CHLIC); TN - HP- POL43/HC-CER1V1 等 (CHLIC)、GSA-COVER 等 (CHC-TN)。Cigna 名称、徽标和其他 Cigna 标志归 Cigna Intellectual Property, Inc. 所有。所有图片仅用于说明目的。905387 09/17 © 2017 Cigna。部分内容经许可提供。
对于飞往阿让、阿尔比、卡斯特尔、卡尔卡松和帕米耶的飞机,计划连接到 RNAV 过境航线,绕过 TMA 2 图卢兹,该航线在两个方向上均由“GAI-MONIX-RAPES-ADSER-DODOM-AGN-LACOU-GOSAD-GAI”点定义。此路线的连接点在 RAD(路线可用性文件)中定义。此路线的连接点在 RAD(路线可用性文档)中提供。若无法遵循此行程,请向启动部门报告,以便 ATC 分配替代航线。如果无法遵循此路线,请在出发时报告,以便空中交通管制分配替代路线。
我在此接受 IDEXX 的一般条款和条件 (GTC),当前版本 www.idexx.de,并指示 IDEXX GmbH 将所要求的测试交由 Vet Med Labor GmbH 作为分包商按照当前价格表和 GTC 进行。动物主人计费:通过填写动物主人信息并签字,我确认:a) 我根据一般条款和条件将我对上述动物主人所要求的测试费用的索赔转让给 IDEXX GmbH,如果动物主人不付款,我有责任向 IDEXX GmbH 支付费用;b) 我已将有关动物主人计费的 IDEXX 一般条款和条件告知动物主人。个人数据保护对 IDEXX GmbH 和 Vet Med Labor GmbH 非常重要,我们的隐私协议可在 https://www.idexx.com/privacy 查看。客户(兽医)的日期和签名:
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。