基于状态的签名(HBS)方案的标准化始于2018年和2019年的IETF RFC的出版物IETF RFCS的扩展Merkle签名方案(XMSS)和基于Leighton-Micali Hash的签名(LMS)的出版物[8],[8],[11]。2020年,美国国家标准技术研究所(NIST)发表了进一步推荐的参数[7]。德国联邦信息安全办公室(BSI)在自己的出版物中指定了这两种算法[5]。自从其标准化以来,已将状态HBS算法部署在多种产品中,从嵌入式设备到服务器[3],[6],[12]。由于其固有的状态,可以使用密钥对创建的签名数量有限,这也限制了应用程序的范围。实际上,它们最适合验证很少更改的数据的完整性和真实性,例如嵌入式设备的固件。然后进行验证过程,然后在安全的启动或固件更新过程中进行。在过去的工作中,研究界已经调查了此用例[9],[10],[15],[17]的硬件和软件优化,并且供应商带来了前进的产品[12]。
物联网(IoT)的兴起(IoT)驱动了诸如Internet工程工作组(IETF)之类的组织,以开发满足相关设备和网络要求的协议。一些挑战是它们的低处理能力,稀缺带宽,电池寿命和降低的数据速率。为了解决这些问题,互联网社区已经开发了针对受限环境的标准化协议。这些工作的结果包括受约束的应用程序协议(COAP)和受约束休息环境(Oscore)的对象安全性。COAP是一种专门的Web传输协议,可提供HTTP的其余服务,但开销和处理减少。Oscore是一种可应用的安全协议,可用于保护COAP通信,包括跨托管代理的端到端加密和完整性,重播保护和对请求的响应的约束。Oscore本身并未定义关键建立协议。在使用Oscore之前,交流方必须建立安全关联,包括通过一些带外机制的共享加密密钥。为了解决此问题,IETF创建了轻巧身份验证的钥匙交换(Lake)工作组,该工作组开发并标识了短暂的Diffie-Hellman,而不是Cose(EDHOC)Pro-Tocol。EDHOC旨在启用身份验证的
●2014年7月,线程组的启动仅考虑了一个目的:提供最佳的方法来连接和控制房屋和建筑物中的小工具。●线程是由行业领先的技术公司开发的基于IPv6的网状网络协议,用于将房屋周围和建筑物彼此之间的产品连接到互联网和云。●线程堆栈是一个开放标准,它是建立在现有电气和电子工程师研究所(IEEE)和互联网工程工作组(IETF)标准的基础上的,而不是全新的标准。●线程网络易于安装,高度安全,可扩展到数百个设备,并开发用于在低功率IEEE 802.15.4芯片组上运行。
标准X9.146量子TLS草案被昵称为增强运输层安全性(TLS)协议以支持NIST PQC算法。安全协议,例如由互联网工程工作组(IETF)开发和管理的各种工作组的TLS,主要依赖金融服务行业。但是,金融服务行业希望早日过渡到PQC算法,而不是较晚,包括银行,商人和第三方金融服务提供商。本届会议介绍了X9.146 X9.146 X9F5 Financial PKI Workgroup正在开发的标准,以及软件工程,用于增强和成功测试此标准在合作的行业供应商中。
当前科学和教育中的信息和电信问题。第七届国际科学技术和科学方法会议;星期六。科学的艺术。 4 吨/以下。编辑。 S.V.巴切夫斯基;比较。 A.G.弗拉迪科,E.A.阿尼科维奇。 SPb。 :SPbSUT,2018。T.4。746 页。程序委员会主席 S. V. Bachevsky,技术科学博士、教授、圣彼得堡国立工业大学校长(俄罗斯) 副主席 K. V. Dukelsky,技术科学候选人、副教授、圣彼得堡国立大学科学工作副校长技术科学部(俄罗斯)执行秘书 Vladyko A. G.,技术科学候选人,IEEE 会员,通信技术研究所所长SPbSUT(俄罗斯) 程序委员会成员 Yevgeni Koucheryavy,教授,博士。博士,IEEE 高级会员,坦佩雷理工大学(芬兰)电子与通信工程系 Tina Tsou,华为技术有限公司联络报告员,ITU-T、IETF 和 ETSI 编辑职位,华为(中国)Matthias Schnöll,教授、博士。 D.,Fachbereich Elektrotechnik,安哈尔特应用科技大学(德国)电气工程博士,IEEK(韩国电子工程师学会)副会长,ETRI(韩国) Edison Pignaton de Freitas,兼职教授,博士。博士,南里奥格兰德联邦大学(巴西)Andrej Kos,教授,博士。卢布尔雅那大学博士(斯洛文尼亚)Janusz Pieczerak,Orange Labs 硕士(波兰)Seilov Sh.,技术科学博士,哈萨克斯坦信息通信学院院长
目的:第 772 号法案授权电信管理办公室 (OTM) 管理和监督所有电信系统,包括州政府行政部门内的局域网和广域网 (LAN、WAN)。OTM 已创建/建立了路易斯安那安全内联网 (LSI),用于机构内和跨机构通信和互联网访问。在向最终用户分配 IP 地址空间时,OTM 将遵循由互联网工程任务组 (IETF) 秘书处维护的征求意见 (RFC) 存储库中规定的分配政策和程序。制定这些准则是为了满足更大的互联网社区对节约稀缺的 IPv4 地址空间的需求,并允许继续使用现有的互联网路由技术。为了标准化全州 IP 寻址方案并在适当的情况下应用 IP 地址空间节约,OTM 遵循以下原则:
本文档的目的是为5G核心的用户平面功能(UPF)网络功能提供全面的,特定于国家 /地区的安全要求。作为用户平面功能,UPF处理用户平面流量。它充当移动性锚,并由会话管理功能(SMF)控制。UPF功能包括流量转发,数据缓冲,合法拦截和QoS执行。The specifications produced by various regional/ international standardization bodies/ organizations/associations like 3GPP, ITU-T, ISO, ETSI, IEEE, IETF, NGMN, O-RAN, TIP, IRTF, GSMA, TSDSI along with the country-specific security requirements are the basis for this document.本文档中提出的TEC/TSDSI引用意味着相应的子句已被原状采用或进行了某些修改。本文档以5G系统体系结构,UPF及其功能的简要说明开始,然后继续解决UPF的共同和实体特定安全要求。b)范围
21 世纪初期,IETF 成立了安全域间路由 (SIDR) 工作组,其任务是开发边界网关协议 (BGP) 的安全模型,旨在消除或降低 BGP 劫持和其他针对核心路由基础设施的攻击的成功率。其结果是开发了一种两阶段安全方法,一个基于自治系统 (AS) 公告的前缀(IP 地址范围)起源,另一个处理此类公告所经过的路径的验证。第一阶段称为资源公钥基础设施 (RPKI),自 2013 年初以来一直处于部署阶段,第二阶段称为 BGPsec,包括对 BGP 规范 RFC 4721 的修改。BGPsec 于 2017 年底成为 RFC 标准。在此期间,NIST 积极参与必要 RFC 的开发,并同时开发了参考实现,以解决已开发安全模型的两个层级。