2020 当选为美国国家发明家科学院 (NAI) 院士 2017 当选为美国国家工程院 (NAE) 院士 2015 印度理工学院孟买分校杰出校友奖 2015 年 P4 论文荣获 SIGCOMM CCR 最佳论文奖 2014 年 SIGCOMM 终身奖,表彰其“对网络算法的持续和多样化贡献,对研究和工业界都产生了深远影响” 2014 年 Koji Kobayashi 计算机与通信奖,表彰其“对网络算法领域及其在高速分组网络中的应用所做出的贡献” 2014 年 SIGCOMM 最佳论文奖,表彰其“分布式拥塞感知负载平衡” 2014 年 IETF 应用网络研究奖,表彰其“报头空间分析” 最佳论文奖,ANCS 2013,表彰其“数据包解析器的设计原理” 2010-2011 斯坦福大学计算机科学系杰出访问学者 2008 OSDI 最佳论文奖,OSDI 2008 论文“Harnessing Memory Redundancy” 2002,当选为 ACM 会士 2001 计算机科学最佳教师奖,加州大学圣地亚哥分校,2001,由毕业本科生投票选出 1998 最佳导师奖,SIGMETRICS 1997 Big Fish,年度导师奖,华盛顿大学研究生工程学生协会 (AGES) 1997。 1996 ONR 青年研究员奖 1996(在 416 名科学领域的申请者中,有 34 人获奖,1996 年选出 2 名计算机科学家) 1996 PODC 最佳学生论文,与学生 Mahesh Jayaram 合作撰写的论文。 1993 1989-1991 DEC 研究生教育项目 (GEEP) 学者
AAMVA American Association of Motor Vehicle Administrators AES Advanced Encryption Standard AID Application Identifier ANSI American National Standards Institute CA Certification Authority CBEFF Common Biometric Exchange Formats Framework CCL Canceled Card List of FASC-N (formerly known as the Hotlist) CFR Code of Federal Regulations CHUID Card Holder Unique Identifier CIN Card Identification Number CISPR International Special Committee on Radio Interference CIV Commercial Identity Verification CRL Certificate Revocation List FASC-N Federal Agency Smart Credential Number FIPS Federal Information Processing Standard (NIST) IBIA International Biometric + Identity Association ICAO International Civil Aviation Organization IEC International Electrotechnical Commission IETF Internet Engineering Task Force INCITS InterNational Committee for Information Technology Standards ISO/IEC International Standards Organization/ International Electrotechnical Commission MARSEC Maritime Security NFC Near Field Communication NIST National Institute of Standards and Technology NMSAC National Maritime Security Advisory Committee OID Object IDentifier PACS Physical Access Control System PDF417 Portable Data File 417 (barcode format) PIN Personal Identification Number PIV Personal Identity Verification PIV-I Personal Identity Verification Interoperable RSA Rivest–Shamir–Adleman Algorithm SIA Security Industry Association STA Secure Technology Alliance SP 8xx Special Publication (NIST) TLV Tag-Length-Value TPK TWIC Privacy Key TSA Transportation Security Administration TWIC运输工人识别凭证UUID通用唯一标识符VCCL视觉取消卡cin
AAMVA American Association of Motor Vehicle Administrators AES Advanced Encryption Standard AID Application Identifier ANSI American National Standards Institute CA Certification Authority CBEFF Common Biometric Exchange Formats Framework CCL Canceled Card List of FASC-N (formerly known as the Hotlist) CFR Code of Federal Regulations CHUID Card Holder Unique Identifier CIN Card Identification Number CISPR International Special Committee on Radio Interference CIV Commercial Identity Verification CRL Certificate Revocation List FASC-N Federal Agency Smart Credential Number FIPS Federal Information Processing Standard (NIST) IBIA International Biometric + Identity Association ICAO International Civil Aviation Organization IEC International Electrotechnical Commission IETF Internet Engineering Task Force INCITS InterNational Committee for Information Technology Standards ISO/IEC International Standards Organization/ International Electrotechnical Commission MARSEC Maritime Security NFC Near Field Communication NIST National Institute of Standards and Technology NMSAC National Maritime Security Advisory Committee OID Object IDentifier PACS Physical Access Control System PDF417 Portable Data File 417 (barcode format) PIN Personal Identification Number PIV Personal Identity Verification PIV-I Personal Identity Verification Interoperable RSA Rivest–Shamir–Adleman Algorithm SIA Security Industry Association STA Secure Technology Alliance SP 8xx Special Publication (NIST) TLV Tag-Length-Value TPK TWIC Privacy Key TSA Transportation Security Administration TWIC运输工人识别凭证UUID通用唯一标识符VCCL视觉取消卡cin
摘要-5G通过在我们的日常生活中与各种服务融合,可以作为变革性数字创新的催化剂。这种范式移动的成功无可否认地取决于稳健的安全措施,并具有主要的身份验证 - 符合对5G网络的访问权限 - 至关重要。两个协议,5G身份验证和关键协议(5G-AKA)以及用于身份验证和关键协议Prime(EAP-AKA')的可扩展的身份验证协议,已为此目的进行了标准化,前者是为第三代合作项目(3GPP)设备设计的,而非3GPP设备的后者则为非3GPP设备。但是,最近的研究暴露了5G-AKA协议中的漏洞,使其容易受到安全漏洞的影响,包括可连接性攻击。此外,量子计算的广告构成了巨大的量子威胁,强调了迫切需要采用抵抗量子的加密机制。尽管已标准化了量子后加密(PQC),但缺乏现实部署限制了其可靠的鲁棒性。相比之下,在数十年的实际应用中,便会加密方案表现出可靠性。为了解决这一差距,互联网工程工作组(IETF)启动了混合PQC算法(HPQC)的标准化,结合了经典和抗量子的技术。因此,确保在5G-AKA协议中确保对量子威胁的前瞻性和弹性至关重要。为了应对这些安全挑战,我们提出了5G-AKA-HPQC协议。结果证实了协议的安全性和正确性。我们的协议旨在通过结合通过椭圆曲线集成的加密方案(ECIE)与源自PQC-key封装机制(KEM)进行协商的密钥来维持与现有标准的兼容性。为了严格而全面地验证5G-AKA-HPQC的安全性,我们采用了正式的验证工具,例如SVO Logic和Proverif。此外,性能评估突出了5G-AKA-HPQC固有的计算和通信开销。此分析表明该协议如何有效地平衡安全性和效率。总而言之,我们的研究提供了对安全,量子安全身份验证协议设计的重要见解,并为移动电信的安全身份验证和关键协议协议的未来标准化奠定了基础。
在过去的几年中,量子物理原理在计算机网络中的应用正在在研究和行业社区之间获得动力,如第一次标准化的尝试,即互联网工程工作组(IETF)的第一次标准化[1] [1],[2]。在这些原则中,量子纠缠已被确定为量子通信的基本资源[1],因为它可以使量子Internet应用程序作为安全的加密密钥分布和分布式量子计算[2]。但是,量子纠缠是一个概率的过程,这很大程度上取决于相关通信设备的特征。因此,纠缠管理构成一个随机控制问题,可以作为马尔可夫决策过程(MDP)[3]提出。在这项初步工作中,我们研究了深钢筋学习(DRL)解决这些问题的能力,尤其是当两个远程通信节点之间建立量子纠缠时,链接不直接连接。在下面的段落中,我们将介绍所需的背景。Qubit和纠缠。在量子通信和量子计算中,经典位的对应物是量子位(或Qubit)。但是,尽管经典位可以采用“ 0”状态或“ 1”状态,但量子可以在两者的叠加中处于叠加,并且有一定的可能性在其中一个状态。量子位于此叠加中,直到其最终测量为止。之后,它将根据相应的概率为“ 0”值或“ 1”值。量子网络。1)。当两个量子位被纠缠时,无法以分离的方式描述其各个状态:一个状态变化,即量子读数测量,其中一个是隐含的变化,无论它们之间的物理距离如何。因此,两个纠缠量子位的测量值表现出用于设计不可能通过经典通信(例如US量子密钥分布或分布式量子计算)设计新应用的非经典相关性。一组能够在RFC中定义为量子网络的节点可以交换Qubits和分布纠缠状态[1]。这些量子节点通过光纤或卫星激光链路相互连接。在本文中,我们假设链接。何时,在两个由直接链接连接的位于两个相邻量子节点的量子位置之间建立纠缠(例如,在图。1),纠缠构成基本量子链接[1]。其成功概率指数随着距离而呈指数减小,这意味着短途纠缠(如图a -b,图。1)比长距离纠缠更可能成功(如图要克服这个问题,我们可以通过所谓的纠缠交换[1],[4]在两个基本链接上创建虚拟链接[1]。此过程允许通过在两个端点之间的路径上消耗先前生成的基本链接来创建长距离纠缠的对。图1,消耗基本链接A -B和B -C以创建更长的虚拟链接A -c。量子节点(如图1)通过纠缠交换创建长距离纠缠的对纠缠的对被称为量子中继器[1],它们必须将中间基本链接存储在所谓的量子记忆[1]上,以稍后消耗。量子内存寿命。在特定时间之后,以其原始状态(例如,纠缠状态)在量子存储器中存储的量子的概率仍会随时间减少[5]。这种概率被称为记忆效率ηm[5],其衰减称为腐蚀性。此过程是量子内存与环境的渐进相互作用的结果,因为存储器不能完全