Katharina Ehrmann应用合成化学研究所,Tu Wien主持人:Andrei Pimenov Termin:Mittwoch,26.03.2025,15:15 Uhr Ort:Tu Wien,freihausgebäudeWiednerHauptnerHauptstraße8-10,1040 Wien seminarraum dc corte bere dc corte <7(7)og)摘要:现代设备(例如医疗假体或信息存储设备)通常需要几种材料属性的复杂相互作用才能运行。这样的宏观和微观多部位零件的制造通常依赖于几种制造技术和相应的工程解决方案,以从几个单独制造的单特制零件中组装多用品构造。因此,一个树脂的真正多物质印刷最近已成为基于光的3D打印社区的焦点领域之一。具体而言,使用不同的辐射强度(灰度光刻)或不同颜色的光(多波长打印)的使用被证明是有力的打印参数,可以通过有目的地改变单体转换来改变交联密度,从而在一个树脂中使用僵硬和柔软的零件打印。然而,随着延迟的时间,这些转化率逐渐淡出的差异随着网络中剩余的未反应单体而发生。此外,材料特性的变化尚未扩展到刚性与软柔性之外。本演讲将探讨超出当前范围之外的灰度光刻的进步。在第二部分中,将引入基于单光量的增值税光聚合物中用于宏观对象的打印的新概念。在第一部分中,基于两光子聚合的灰度打印,用于制造具有前所未有的机械性能变异性以及在一个3D打印对象内具有前所未有的机械性能变异性以及可降解和不可降解部分的区分的µM尺寸对象。将证明结晶度在光聚合物中的高效诱捕将被证明,随后在多温度和灰度光刻中用于结晶度的变化,因此分别通过印刷温度或辐射强度的简单变化来变化。最后,将通过通过两种光线通过两种颜色的光线引入完全正交3D打印的第一个原理证明来讨论基于波长 - 正交反应的多波长3D打印的承诺,以创建可降解与不降解对象。
生物多样性损失和气候变化是对生态系统功能和稳定性最令人震惊的威胁之一。但是,这些因素通常是分别研究的,忽略了物种灭绝与生态系统气候变化之间的潜在相互作用。在这里,我们评估了不同温度方案如何影响微生物多样性与生态系统功能之间的关系,从碳(C)循环功能的温度敏感性方面。我们假设更复杂的群落在两个温度状态下都促进了C循环功能的稳定性。我们没有观察到所有C周期过程对不同复杂性社区内温度升高的无处不在。虽然生长稳定,并且在复杂性水平上的温度升高时,呼吸率在较低的复杂性下比高温下的高复杂度更高。碳的使用效率既整合了生长和呼吸,往往随温度较低的温度而降低。共同的结果表明,在气候变化的情况下,社区复杂性对于维持C循环热反应的重要性。
从6月14日至15日,第35版SIA动力总成大会将在波特马利举行。随着汽车行业的重新发明以支持能源过渡,重点是低碳移动技术的最新发展,从Ifpen及其Carnot Ifpen运输能源开始。
大多数全球能源场景都预计能量融合和国内生产总值(GDP)之间的关系会发生结构性破坏,其中几种场景预测了绝对脱钩,而在GDP继续增长的同时,ERGY的使用率下降。但是,绝对脱钩的先例很少,当前的全球趋势朝着相反的方向。本文探讨了能源消耗与GDP之间历史密切关系的一种可能的解释,即,改善能源效率的范围内反弹效应比通常假设的要大。我们回顾了整个经济篮板效应规模的证据,并探讨了在用于产生全球能量情景的模型中是否考虑了这种影响。我们发现证据基础的规模和质量正在增长,但就所使用的方法,所使用的假设和所包括的反弹机制而言,证据基础却非常多样化。尽管这种多样性,结果仍然是一致的,并表明范围内的反弹效应可能会侵蚀提高能源效率所预期的能源节省的一半以上。我们还发现,综合评估和全球能量模型忽略了许多驱动反弹效应的机制。因此,我们得出的结论是,全球能源方案可能会低估全球能源需求增长的未来增长率。
食物,土地和水系统需要深刻的转变 - CGIAR可以并且必须发挥核心作用。cgiar与合作伙伴合作,将开创性的农业研究转化为实地的有形发展成果,具有惊人的50年历史记录。在21世纪,CGIAR面临着一组不同的复杂,更相互联系的挑战,比以前更快。气候变化,生物多样性丧失,冲突,灾难性的天气事件,跨界植物性疾病和害虫传播以及大流行只是全球威胁的一些例子,这些例子与不可持续的食品系统无关紧要。他们对我们结束饥饿并实现或维护关键发展成果的能力构成了立即的风险。最终,CGIAR需要完全改变我们的食物,土地和供水系统,以滋养不断增长的人群,而不会冒着维持我们存在的自然过程的稳定性的风险。
区域 - WS-NORTH-EAST 区域 - SS-WEST-SOUTH William Conway Brian Midkiff 电话:904-776-0845 电话:904-562-8300 电子邮件:conwwt@jea.com 电子邮件:midkbm@jea.com 32202, 32206, 32226 32207, 32217, 32223, 32257, 32258, 32259 区域 - WS-NORTH-EAST 区域 - SS-MID-EAST Morgan D'Amico Billie Woods 电话:904-627-6310 电话:904-568-4238 电子邮件:woodbj@jea.com 电子邮件:worlmf@jea.com 32204, 32205, 32209, 32254 32081, 32116, 32224, 32246, 32256 区域 - WS-WEST 区域 - SS-NORTH-EAST Robert Simpson Dan Griffis 电话:904-482-2901 电话:904-568-8266 电邮:grifdq@jea.com 电邮:simprb@jea.com 32220, 32221, 32222, 32234 32211, 32225, 32233, 32250, 32277 区域 - WS-MID-SOUTH Eric Theodoridis
稀土正铁氧体在稀土和铁离子的磁有序状态下表现出各种有趣的物理现象,例如自旋重新取向跃迁时的巨大声速异常和允许电控制磁性的磁感应铁电性 [1,2]。受挫磁体镝正铁氧体具有物理性质截然不同的竞争状态。在临界磁场之上,它会产生自发电极化并显示巨线性磁电效应 [3]。最近的中子衍射实验表明,在低外加场下,这种多铁磁电状态受到 Dy 和 Fe 自旋不公度顺序的抑制 [4- 6]。我将讨论不公度状态的性质,并表明 Dy 和 Fe 自旋之间的耦合使均匀状态不稳定,而不会在 Dy 自旋的反铁磁顺序中形成周期性的畴壁阵列。 Dy 畴壁之间的相互作用由通过 Fe 磁性子系统传播的磁振子介导,类似于介子交换产生的质子和中子之间的汤川相互作用 [7]。磁畴壁带电,不公度相和均匀相之间的竞争导致自旋态对外加电场和磁场的高度敏感性。[1] VD Buchel'nikov 等人,Physics--Uspekhi 39,547(1996 年)。[2] Y. Tokunaga 等人,Nature Mater。8,558(2009 年)。[3] Y. Tokunaga 等人,Phys. Rev. Lett. 101,097205(2008 年)。[4] C. Ritter 等人,J. Phys. Condens. Matter. 34,265801(2022 年)。 [5] B. Biswas 等,Phys. Rev. Mater. 6, 074401 (2022)。[6] S. Nikitin 等,即将出版。[7] S. Artyukhin 等,Nature Mater. 11, 694 (2012)。
在本项目中,我们将探索一种新型材料,即与超导体耦合的铅锡硫族化合物半导体,在量子信息设备中的潜在应用。我们假设它们独特的物理特性——强大的自旋轨道相互作用、高电子迁移率和有效的静电控制——将有可能减少量子比特的退相干。此外,它们还可用于研究纳米级设备中的新量子现象。我们将研究这种材料平台是否能够发现新的量子控制方法并提高量子设备的性能。一个由理论物理学家、实验学家和晶体生长者组成的国际团队将努力开发材料、表征它们、构建和分析量子设备,并在单一且一致的反馈回路过程中从理论上预测这些系统中的新量子动力学。
IFPEN的R&I计划的目的是克服现有的科学和技术挑战,以开发行业可以使用的创新。面临着一系列开放的科学问题,IFPEN的基础研究旨在生产新知识,概念和方法论的跨职能基础,这是明天创新的发展平台。项目通常是在与学术和工业合作伙伴的协作环境中进行的。IFPEN的研究人员会定期向公共当局提供科学专业知识,提供见解以帮助他们进行决策过程。ifpen在欧洲地平线框架计划的背景下是众多项目,技术平台和网络的活跃参与者,并且也有助于出现在流动性和能源领域的欧洲研究愿景。
具有或即将获得生物学、基础医学、药学等相关专业博士学位;年龄35周岁以下;具有熟练的中英文沟通能力;能够在国内全职工作;熟练使用R语言、Python等编程语言进行生物信息学分析;具有较强的英文阅读和写作能力,曾以第一作者身份发表过SCI论文;热爱科研,具有独立研究能力和团队合作精神;有免疫遗传学研究和服务器使用经验者优先考虑。