饭山株式会社冲突矿产报告 矿产资源是 IT 和电子元件的重要原材料,人们对此的担忧日益增加。在刚果民主共和国 (DRC) 及其周边国家等受冲突影响和高风险地区开采此类矿产可能涉及非法行为,例如童工、侵犯人权、强迫劳动、破坏环境和洗钱等。因此,使用这些地区的矿产将促进这些团体活动。我们认为考虑这一问题是我们的社会责任,因此饭山株式会社致力于从不涉及冲突或非法行为的来源采购矿产(即采购无冲突矿产)用于我们的产品。为了实现这一目标,我们调查了我们的供应商,以确保特定矿产(美国《多德-弗兰克法案》定义为冲突矿产的四种矿产资源(钽、锡、钨和金)以及钴)是从与非法活动无关的来源采购的。我们的调查涵盖了 100% TCO 产品供应商:
———上返 - 至美至 - 至美至 - ─上返组成部分:IIYAMA使用PAIA(产品属性来影响算法)来执行产品碳足迹。 PAIA符合IEC TR 62921的要求,是MIT材料系统实验室开发的简化LCA工具。 它考虑了产品的生命周期,以计算产品碳足迹。- 至美至 - 至美至 - ─上返组成部分:IIYAMA使用PAIA(产品属性来影响算法)来执行产品碳足迹。 PAIA符合IEC TR 62921的要求,是MIT材料系统实验室开发的简化LCA工具。 它考虑了产品的生命周期,以计算产品碳足迹。- 至美至 - ─上返组成部分:IIYAMA使用PAIA(产品属性来影响算法)来执行产品碳足迹。 PAIA符合IEC TR 62921的要求,是MIT材料系统实验室开发的简化LCA工具。 它考虑了产品的生命周期,以计算产品碳足迹。- ─上返组成部分:IIYAMA使用PAIA(产品属性来影响算法)来执行产品碳足迹。PAIA符合IEC TR 62921的要求,是MIT材料系统实验室开发的简化LCA工具。它考虑了产品的生命周期,以计算产品碳足迹。
异构计算表示针对特定应用使用不同计算平台的场景 (Danovaro 等人,2014)。随着对大数据量和速率的查询和分析需求不断增长,对计算资源的需求也随之增长,但能源效率限制了传统方法,即通过在现有基础设施中添加数千台最先进的 x86 机器来提高数据中心的计算能力,转而采用节能设备 (Cesini 等人,2017;D'Agostino 等人,2019)。因此,数据中心的计算节点具有不同的执行模型,从传统的 x68 架构到 GPU、FPGA(Papadimitriou 等人,2020 年)和其他处理器类型,如 ARM 或更专业的处理器,如 TPU(Albrecht 等人,2019 年;Cass,2019 年)。例如,GPU 用于许多基于常规领域的科学应用中,并且提供的性能比传统内核高出几个数量级。它们也广泛用于深度学习,尤其是机器学习训练阶段。FPGA 是一种可以由程序员配置以实现特定功能的集成电路,它试图缩小硬件和软件之间的差距。在此背景下,该研究主题收集了五篇论文,展示了在高能物理中采用异构架构进行 AI 和大数据应用的非常有趣的经验。在 GPU 加速机器学习推理作为中微子实验计算服务 (Wang 等人) 中作者讨论了通过利用 GPU 资源作为服务为在深层地下中微子实验 (DUNE) 背景下开发的 ProtoDUNE-SP 重建链所实现的性能。这篇文章代表了在中微子软件框架中使用 GPU 加速机器学习的首次体验之一。最耗时的任务,即轨迹和粒子簇射命中识别,已加速 17 倍。在使用 CMS 像素跟踪器对轨迹和主顶点进行异构重建(Bocci 等人)中作者描述了一种在 GPU 上实现像素轨迹和顶点重建链的异构实现,能够实现高性能加速值。在 FPGA 上用于高能物理实时粒子重建的距离加权图神经网络(Iiyama 等人)中所开发的框架已集成到 CMS 粒子探测器重建软件 CMSSW (http://cms-sw.github.io) 中,CMSSW 用于检测 CMS 实验中 LHC 高能碰撞产生的粒子和现象。作者提出了一种新方法,将图神经网络从复杂的现代机器学习包导出到高效的 FPGA 实现中。
[5] L. Zhang 等人,“内燃机可变压缩比技术的最新进展”,SAE 技术论文 2019-01-0239,2019 年。[6] J. Wang 等人,“均质压燃 (HCCI) 燃烧:挑战与机遇”,燃烧与火焰,第 200 卷,第 1-27 页,2019 年。[7] K. Smith 等人,“汽油直喷:当前技术和未来发展的回顾”,国际发动机研究杂志,第 20 卷,第 4 期,第 441-455 页,2019 年。[8] A. Brown 等人,“轻度混合动力电动汽车:综合评论”,IEEE Access,第 20 卷,第 4 期,第 441-455 页,2019 年。 7,第 29328-29344 页,2019 年。[9] B. Chen 等人,“全混合动力系统:设计、控制和能源管理策略”,Energies,第 12 卷,第 14 期,第 2683 页,2019 年。[10] C. Davis 等人,“插电式混合动力汽车:近期发展和未来展望回顾”,IEEE Transactions on Transportation Electrification,第 6 卷,第 3 期,第 858-872 页,2020 年。[11] X. Li 等人,“燃料电池电动汽车:进展、挑战和未来展望”,Journal of Power Sources,第 20 卷,第 3 期,第 858-872 页,2020 年。 382,第 176-196 页,2018 年。[12] Y. Wang 等人,“电池电动汽车的进步:挑战与机遇回顾”,可再生和可持续能源评论,第 74 卷,第 1151-1164 页,2017 年。[13] Z. Zhang 等人,“固态电池:挑战与前景”,先进能源材料,第 8 卷,第 19 期,2018 年。[14] Guezennec Y、Musardo C、Staccia B、Midlam Mohler S、Calo E、PisuP。带有混合模式 HCCI/DI 发动机的 HEV 的 NOx 减排监控。SAE 技术论文;2004-05-0123; [15] Midlam- Mohler S, Haas S ,Guezennec Y, Bargende M, Rizzoni G. 带外部混合气制备的混合模式柴油 HCCI/DI. SAE 技术论文 2004;2004-05-0446;2004。侯建雄,乔晓倩。利用小波包变换对 HCCI DME 发动机爆震燃烧特性进行表征。应用能源 2010;87:1239-46。 [16] JOO ss P Tu est d J h ss “HCCI 发动机配备三元催化转化器详细排放形态的实验研究”,SAE P per 2001-01-1031,2001 年。 [17] DS Kim d CS Lee “通过可变预混合燃料和 EGR 改善 HCCI 发动机的排放特性”,Fue v 85 5-6,第 695-704 页,2006 年。 [18] Jacek Hunicz、Alejandro Medina,对配备三元催化转化器的 HCCI 发动机详细排放形态的实验研究,Energy 117(2016 年)388-397。 [19] M Christese A Hu tqvist d J h ss “Dem str ti g the multi fuel capacity of ahm ge e us ch rge c mpressi ig iti e with v ri bec mpressi ir ti ” SAE P per1999- 01- 3679, 1999. [20] M Christese J h ss d P Ei ew “HCCI using isoctane, ethanol and natural gas—c mp ris with sp rk ig iti per ti ” SAE P per 972874, 1997. [21] K. Hiraya, K. Hasegawa, T. Urushihara, A. Iiyama, and T. Itoh,汽油燃料压燃发动机的研究——工作区域扩展试验。SAE 论文 2002-01-0416,2002 年。[22] N Iid d T Ig r shi,“内燃机中正丁烷和 DME/空气混合物的自燃和燃烧” SAE 论文 2000-01-1832,2000 年。JOOlsson、P. Tunestal、BJ Johansson、S Five d R Ag md M Wi i“HCCI 中压燃发动机的最优燃烧条件” SAE 论文 2002-01-0111,2002 年。[23] SR Ganesan,内燃机,第 4 版。印度新德里:Tata McGraw-Hill Education,2013 年。[24] R.Stone,《内燃机简介》,第 4 版。纽约州纽约:Palgrave Macmillan,2012 年。[25] JB Heywood,《内燃机基础》,第 2 版。纽约州纽约:McGraw-Hill,1988 年。[26] AK Agarwal,《汽油发动机管理:系统和部件》,第 1 版。纽约州纽约:Springer,2005 年。[27] RD Braun,《内燃机轴承和流体动力轴承的润滑》,第 1 版。纽约州纽约:Springer,2010 年。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且