本文介绍了2019年国际山区会议(IMC)会议的综合,并得到了关键文献的支持,并为未来的研究和相关活动提供了建议。IMC于2019年9月8日至12日在奥地利因斯布鲁克举行,吸引了来自52个国家的526名参与者。其目的是鼓励自然,空间,社会和应用科学家之间的深度跨学科讨论,以提高对山区系统的理解,对压力源的反应以及对改变的弹性。In this regard, it was intended to build upon the 3 mountain conferences that took place in Perth, Scotland, in 2005, 2010, and 2015, which resulted in the publication of proceedings, with conclusions and recommendations for research (Price 2006), 2 special issues of Mountain Research and Development (Price et al 2012; Price, Greenwood, et al 2016), and analyses of contributions with syntheses and recommendations for research (Bj € ornsen Gurung 2006;
区域图 22.1 区域图 22.1 参见 AD 2 LFBH ARC 01。无线电通信故障 22.2 无线电通信故障板 22.2 在 VMC 起飞时:半转弯降落在 AD 上或继续飞行到适当的 AD。在 VMC 中起飞时:掉头降落在机场或继续飞往合适的机场。在 IMC 出发时:继续飞行直到最后指定 FL 的 TMA 限制,然后开始爬升至飞行计划中指示的巡航 FL。在仪表气象条件 (IMC) 下出发:继续飞行至最后指定的飞行高度层的终端飞行区域 (TMA) 限制,然后开始爬升至飞行计划中指示的巡航飞行高度层。到达时若错过 APCH:执行新的 APCH。如果不成功,则爬升至 2500 英尺并按照 RDL 345° BMC(MAG 165°)清除 TMA,以寻求 VMC 条件。
抽象造血干细胞移植(HCT)已越来越多地用于遗传代谢疾病(IMD)的患者。免疫介导的细胞质(IMC),表现为溶血性贫血,血小板减少症和/或中性粒细胞减少症,在该患者人群中被认为是显着的并发症,但是我们对目前有限的发生率,危险因素和病理生理学的理解是有限的。对已发表的文献的评论表明,患有非恶性疾病适应症的HCT的年轻患者的发病率更高。但是,一些报告表明,IMD患者的发病率甚至更高(发病率在10%至56%之间)。本综述总结了文献,提供了一种更好地理解IMC可能病因的方法,并为IMD患者提出了诊断和管理计划,这些患者在HCT之后发展了单次或多部性细胞质。
摘要◥人工智能(AI) - 有能力的方法越来越多地用作提取下部效率并改善诊断工作流量的组织病理学工具。另一方面,HI-PLEX方法被广泛采用以分析肿瘤标本中的免疫生态系统。在这里,我们旨在结合非小细胞肺癌(NSCLC)的AI辅助组织和Imagingmass细胞仪(IMC)toAnalyzetheecosystem。在158个NSCLC试样的苏木精和曙红(H&E)切片上使用了一种基于AI的方法,以准确鉴定腺癌和鳞状癌细胞,并产生肿瘤细胞空间簇的分类。连续的组织切片用金属标记的抗体染色,并通过IMC工作流进行处理,从而可以定量检测与肿瘤细胞,组织结构,CD45Þ髓样糖和免疫
1。所有装置均应符合城市,县或国家建筑法规。2。传入管道可以是刚性镀锌钢(RGS),中型金属导管(IMC)或SCH 80 PVC。如果使用SCH 80 PVC,承包商必须确保贸易规模清晰标记和可见,显示SCH80。如果无法做到这一点,它将被拒绝。3。在传入导管的面板端需要塑料衬套。4。对于RGS或IMC导管,需要轮毂或粘合套件才能正确接地。集线器是首选方法(根据本地建筑代码)。5。所有暴露在地球上的金属导管必须用10 mil的管道保护胶带覆盖,½盖或PVC涂层。6。踢或偏移不得在服务立管中允许。7。在导管线中不允许减速器。例外:从3“服务导管过渡到2½”立管时允许3“ x2½”还原器 - 参见RPI-23和RPI-24。还原器应为锥形,光滑的墙设计,以促进电缆拉动。
摘要 — 本研究展示了一种可编程的内存计算 (IMC) 推理加速器,用于可扩展执行神经网络 (NN) 模型,利用高信噪比 (SNR) 电容模拟技术。IMC 加速计算并减少矩阵向量乘法 (MVM) 的内存访问,这在 NN 中占主导地位。加速器架构专注于可扩展执行,解决状态交换的开销以及在高密度和并行硬件中保持高利用率的挑战。该架构基于可配置的片上网络 (OCN) 和可扩展内核阵列,将混合信号 IMC 与可编程近内存单指令多数据 (SIMD) 数字计算、可配置缓冲和可编程控制集成在一起。这些内核支持灵活的 NN 执行映射,利用数据和管道并行性来解决跨模型的利用率和效率问题。介绍了一种原型,它采用了 16 nm CMOS 中演示的 4 × 4 核心阵列,实现了峰值乘法累加 (MAC) 级吞吐量 3 TOPS 和峰值 MAC 级能效 30 TOPS/W,均为 8 位操作。测量结果表明模拟计算具有很高的精度,与位真模拟相匹配。这实现了稳健且可扩展的架构和软件集成所需的抽象。开发的软件库和 NN 映射工具用于演示 CIFAR-10 和 ImageNet 分类,分别采用 11 层 CNN 和 ResNet-50,实现了 91.51% 和 73.33% 的准确度、吞吐量和能效、7815 和 581 图像/秒、51.5 k 和 3.0 k 图像/秒/W,具有 4 位权重和激活。
目标和范围AI模型近年来在各种应用中不断显示出非凡的性能,包括计算机视觉,自然语言处理,大语言模型等。精确驱动的AI模型体系结构在很大程度上增加了模型尺寸和计算,尤其是要求高密度存储器存储。处理引擎与片上/芯片内存之间的频繁通信导致高能消耗,这成为AI硬件加速器设计的瓶颈。为了克服此类挑战,内存计算(IMC)和近存储计算(NMC)已被视为能效体AI加速度的有希望的方案。权重存储在存储单元中,并在内存阵列内或附近执行点产品或其他操作。关于IMC/NMC方案的内存技术,SRAM已经成熟,但挥发性很大,消耗了大面积(例如,8T/10T bitcells)和CMOS设备中的泄漏功率。这种缺点促进了非易失性记忆(NVM),作为基于区域有效的IMC/NMC AI加速度的有吸引力的解决方案。NVM包括电阻随机访问记忆(RRAM),相变内存(PCM),自旋转移 - 转移磁性磁随机访问记忆(STT- MRAM),铁电场效果记忆(FERAM,FEFET),FEFET,FEFET,FEFET),铁电容式设备等。值得注意的是,包括英特尔,TSMC,三星和Globalfoundries在内的铸造公司已商业化或原型构造单一集成的NVM技术,例如rram,mram,feram/fefet等。
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
模块1:控制器性能索引,基于模型和模型的调整及其比较研究,高级调整技术和直接合成;模块2:基于模型的控制,模型不确定性和干扰,IMC结构和设计,基于IMC的PI-PID控制器设计;模块3:多变量控制系统的简介,交互分析和多个单回路设计,多变量控制器的设计,相对增益阵列,MIMO系统的调整,De-Coupler Design的概念;模块4:模糊控制技术及其结构,模糊控制 - 实时专家系统设计,基于知识的控制器设计,非线性模糊控制,推论方案,规则基础生成和规则最小化技术;模块5:自适应模糊控制,性能监测和评估,适应机制;模块6:神经控制器设计,具有混合结构的神经模糊控制器,神经模糊的自适应学习控制网络,神经模糊控制器的结构学习;模块6:模糊和神经模糊控制器的优化技术。